Quality & Quantity

, Volume 53, Issue 4, pp 2253–2271 | Cite as

Sexual behavior patterns in online sexually explicit materials: a network analysis

  • Yanyan ZhouEmail author
  • Bryant Paul
  • Vincent Malic
  • Jingyuan Yu


Free online sexually explicit materials have become the major way for pornography viewers to consume pornographic materials. Most previous content analytic studies have focused on aggression and degradation behaviors in sexually explicit materials. Fewer studies have focused on the prevalence of depictions of individual sexual behaviors, overlooking that pornographic materials not only show viewers individual sexual behaviors but also provide sexual scripts, which contain a series of co-occurring sexual behaviors. Using the network analysis method, the current study examined the co-occurrence patterns of a large number of sexual behaviors depicted in free online sexually explicit materials. The study has revealed the primary sexual script depicted in popular online sexually explicit materials and predicted the potential effects of such a script.


Pornography Sexualization Sexual script Sexual behaviors Network analysis 



  1. Alexa.: The top 500 sites on the web. (2019) Alexa Web site: Accessed 27 Mar 2019
  2. Anthony, S.: Just how big are porn sites? ExtremeTech. (2012) Retrieved March 27, 2019 from
  3. Bauserman, R.: Sexual aggression and pornography: a review of correlational research. Basic Appl. Soc. Psychol. 18(4), 405–427 (1996). CrossRefGoogle Scholar
  4. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Soc. Netw. 21(4), 375–395 (2000). CrossRefGoogle Scholar
  5. Bridges, A.J., Wosnitzer, R., Scharrer, E., Sun, C., Liberman, R.: Aggression and sexual behavior in best-selling pornography videos: a content analysis update. Violence Against Women 16(10), 1065–1085 (2010). CrossRefGoogle Scholar
  6. Brosius, H.B., Weaver III, J.B., Staab, J.F.: Exploring the social and sexual “reality” of contemporary pornography. J. Sex Res. 30(2), 161–170 (1993). CrossRefGoogle Scholar
  7. Brown, J.D., L’Engle, K.L.: X-rated sexual attitudes and behaviors associated aith US Eerly adolescents’ exposure to sexually explicit media. Commun. Res. 36(1), 129–151 (2009). CrossRefGoogle Scholar
  8. Bryant, J., Brown, D.: Uses of pornography. In: Bryant, Z.J. (ed.) Pornography: Research Advances and Policy Considerations, pp. 25–55. Lawrence Erlbaum, Hillsdale (1989)Google Scholar
  9. Collins, A.M., Loftus, E.F.: A spreading-activation theory of semantic processing. Psychol. Rev. 82(6), 407 (1975)CrossRefGoogle Scholar
  10. Cooper, A.: Sexuality and the internet: surfing into the new millennium. Cyber Psychol. Behav. 1(2), 187–193 (1998). CrossRefGoogle Scholar
  11. Demare, D., Briere, J., Lips, H.M.: Violent pornography and self reported likelihood of sexual aggression. J. Res. Pers. 22(2), 140–153 (1988). CrossRefGoogle Scholar
  12. Doran, K.: Industry size, measurement, and social costs. In: Eberstadt, M., Layden, M.A. (eds.) The Social Cost of Pornography: A Statement of Findings and Recommendations. Witherspoon Institute, Priceton (2010)Google Scholar
  13. Frith, H., Kitzinger, C.: Reformulating sexual script theory: developing a discursive psychology of sexual negotiation. Theory Psychol. 11(2), 209–232 (2001). CrossRefGoogle Scholar
  14. Garcia, L.T.: Exposure to pornography and attitudes about women and rape: a correlational study. J. Sex Res. 21, 378–385 (1986). CrossRefGoogle Scholar
  15. Gorman, S., Monk-Turner, E., Fish, J.N.: Free adult Internet web sites: how prevalent are degrading acts? Gend. Issues 27(3–4), 131–145 (2010). CrossRefGoogle Scholar
  16. Hald, G.M.: Gender differences in pornography consumption among young heterosexual Danish adults. Arch. Sex. Behav. 35(5), 577–585 (2006). CrossRefGoogle Scholar
  17. Huang, L., Wang, G., Wang, Y., Blanzieri, E., Su, C.: Link clustering with extended link similarity and EQ evaluation division. PLoS ONE 8(6), e66005 (2013). CrossRefGoogle Scholar
  18. Huesmann, L.R.: An information processing model for the development of aggression. Aggress. Behav. 14(1), 13–24 (1988).;2-j CrossRefGoogle Scholar
  19. Huesmann, L.R., Miller, L.S.: Long-term effects of repeated exposure to media violence in childhood. Aggress. Behav. 1, 153–186 (1994). CrossRefGoogle Scholar
  20. Klaassen, M.J., Peter, J.: Gender (in) equality in internet pornography: a content analysis of popular pornographic Internet videos. J. Sex Res. 52(7), 721–735 (2015). CrossRefGoogle Scholar
  21. Krippendorff, K.: Content Analysis: An Introduction to Its Methodology. Sage Publiations, Los Angeles (2013)Google Scholar
  22. Lo, V.H., Wei, R.: Third person effect, gender, and pornography on the internet. J. Broadcast. Electron. Media 46, 13–33 (2002). CrossRefGoogle Scholar
  23. Lo, V.H., Wei, R.: Exposure to internet pornography and Taiwanese adolescents’ sexual attitudes and behavior. J. Broadcast. Electron. Media 49(2), 221–237 (2005). CrossRefGoogle Scholar
  24. Malik, C., Wojdynski, B.W.: Boys earn, girls buy: depictions of materialism on US children’s branded-entertainment websites. J. Child. Media 8(4), 404–422 (2014). CrossRefGoogle Scholar
  25. Mckee, A.: The objectification of women in mainstream pornographic videos in Australia. J. Sex Res. 42(4), 277–290 (2005). CrossRefGoogle Scholar
  26. Mooallem, J.: A disciplined business, New York Times (2007). Retrieved March 27, 2019 from
  27. Newman, M.E.: Mathematics of networks. New Palgrave Encycl. Econ. (2008). Google Scholar
  28. Olivier, S.: " "Social network analysis." Knowledge solutions. Springer, Singapore, pp. 39–43 (2017)Google Scholar
  29. Opsahl, T.: Structure and evolution of weighted networks (Doctoral dissertation, Queen Mary, University of London) (2009). Retrieved March 27, 2019 from ​
  30. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010). CrossRefGoogle Scholar
  31. Paranyushkin, D.: Visualization of text’s polysingularity using network analysis. Prototype Lett. 2(3), 256–278. Retrieved from: (2011)
  32. Potter, W.J., Levine-Donnerstein, D.: Rethinking validity and reliability in content analysis. J. Appl. Commun. Res. 27(3), 258–284 (1999). CrossRefGoogle Scholar
  33. Ropelato, J.: Internet pornography statistics (2006). Retrieved March 27, 2019 from
  34. Traffic Statistics. (2019). Accessed 27 Mar 2019
  35. Štulhofer, A., Buško, V., Landripet, I.: Pornography, sexual socialization, and satisfaction among young men. Arch. Sex. Behav. 39(1), 168–178 (2010). CrossRefGoogle Scholar
  36. Sun, C., Bridges, A., Wosnitzer, R., Scharrer, E., Liberman, R.: A comparison of male and female directors in popular pornography: what happens when women are at the helm? Psychol. Women Q. 32(3), 312–325 (2008). CrossRefGoogle Scholar
  37. Vannier, S.A., Currie, A.B., O’Sullivan, L.F.: Schoolgirls and soccer moms: a content analysis of free “teen” and “MILF” online pornography. J. Sex Res. 51(3), 253–264 (2014). CrossRefGoogle Scholar
  38. Vladeanu, M., Lewis, M., Ellis, H.: Associative priming in faces: semantic relatedness or simple co-occurrence? Memory Cognit. 34(5), 1091–1101 (2006). CrossRefGoogle Scholar
  39. Wilson, B.J., Kunkel, D., Linz, D., Potter, J., Donnerstein, E., Smith, S.L., et al.: Violence in television programming overall: University of California, Santa Barbara study. In: Seawall, M. (ed.) National television violence study, vol. 2, pp. 3–204. Sage Publications, Thousand Oaks (1998)Google Scholar
  40. Wright, P.J.: Mass media effects on youth sexual behavior assessing the claim for causality. Ann. Int. Commun. Assoc. 35(1), 343–385 (2011). CrossRefGoogle Scholar
  41. Wright, P.J.: US males and pornography, 1973–2010: consumption, predictors, correlates. J. Sex Res. 50(1), 60–71 (2013). CrossRefGoogle Scholar
  42. Yang, N., Linz, D.: Movie ratings and the content of adult videos: the sex violence ratio. J. Commun. 40, 28–42 (1990). CrossRefGoogle Scholar
  43. Zhou, Y., Paul, B.: Lotus blossom or dragon lady: a content analysis of “Asian women” online pornography. Sex. Cult. 20(4), 1083–1100 (2016). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Media SchoolIndiana University BloomingtonBloomingtonUSA
  2. 2.School of Informatics and ComputingIndiana University-BloomingtonBloomingtonUSA
  3. 3.Department of Social Psychology, Universitat Autónoma de BarcelonaBarcelonaSpain

Personalised recommendations