Sustainability, welfare and efficiency of nations

Abstract

Adjusted net saving (ANS) has emerged as a leading indicator of sustainability. In addition, changes in ANS translate into changes in welfare (Hamilton in World Bank Econ Rev 13(2):333–356, 1999). This document uses a new data envelopment analysis model to assess efficiency of countries taking into account not only GDP creation but also sustainability and welfare by adding ANS in the set of desirable outcomes. Given that ANS can be negative a new anti-efficiency DEA model allowing for negative data recently proposed by DiMaria (2018) is used. Combining efficiency and anti-efficiency greatly increases discrimination of countries and proposes a more accurate ranking of countries.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Notes

  1. 1.

    See Liu et al. (2017) for a presentation of other indicators commonly used to assess sustainability.

  2. 2.

    Rent = World price-mining cost-milling and beneficiation costs-smelting costs-transport to port-‘normal’ return to capital.

  3. 3.

    The consumption of fixed capital results from the application of the perpetual inventory method and depends on assumptions made on survival function of capital and hypothetical average lifetime of capital goods.

  4. 4.

    Energy inputs could be added, at the cost of reducing the number of countries under investigation, and production should be used instead of GDP that is output minus intermediate consumption that includes energy inputs.

  5. 5.

    Linear programs were solved using the R package lpSolve version 5.6.13.

  6. 6.

    The distribution of efficiencies resulting from model 3 being symmetric, the sample is ranked by increasing efficiencies and divided in four groups of similar size (17 countries, 15 for the high efficiency group) defining the low efficiency, lower-middle, upper middle and high efficiency groups. It would be similar to chose quartiles to split the sample.

  7. 7.

    Lets take the hypothetical example of a country that would have achieved 0 GDP and 0 ANS it wont be argued to decommission all capital stocks and to fire all workers. Rather than reducing inputs and keeping level of GDP constant (then gaining in efficiency), countries should be more efficient in combining inputs to increase GDP.

  8. 8.

    https://ec.europa.eu/epale/en/resource-centre/content/depth-analysis-adult-learning-policies-and-their-effectiveness-europe.

References

  1. Aida, K., Cooper, W.W., Pastor, J.T., Sueyoshi, T.: Evaluating water supply services in Japan with RAM: a range-adjusted measure of inefficiency. Omega 26(2), 207–232 (1998)

    Article  Google Scholar 

  2. Akerlof, G.A.: An Economic Theorist’s Book of Tales. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  3. Arestis, P., Chortareas, G., Desli, E.: Financial development and productive efficiency in OECD countries: an exploratory analysis. Manch. Sch. 74(4), 417–440 (2006)

    Article  Google Scholar 

  4. Bekker, S.: Flexicurity in the European semester: still a relevant policy concept? J. Eur. Public Policy 25(2), 175–192 (2018)

    Article  Google Scholar 

  5. Börsch-Supan, A., Bucher-Koenen, T., Kutlu-Koc, V., Goll, N.: Dangerous flexibility retirement reforms reconsidered. Econ. Policy 33(94), 315–355 (2018)

    Article  Google Scholar 

  6. Brundtland, G.H.: Our Common Future. Technical report, World Commission on Environment and Development, United Nations (1987)

  7. Ceccobelli, M., Gitto, S., Mancuso, P.: ICT capital and labour productivity growth: a non-parametric analysis of 14 OECD countries. Telecommun. Policy 36(4), 282–292 (2012)

    Article  Google Scholar 

  8. Charnes, A., Cooper, W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429–444 (1978)

    Article  Google Scholar 

  9. Charnes, A., of Texas at Austin. Center for Cybernetic Studies, U., Cooper, W., Rousseau, J., (U.S.), N.S.F., Semple, J.: Data Envelopment Analysis and Axiomatic Notions of Efficiency and Reference Sets. Research report (University of Texas at Austin. Center for Cybernetic Studies). Center for Cybernetic Studies, University of Texas at Austin (1987)

  10. Chen, L., Wang, Y., Lai, F., Feng, F.: An investment analysis for China’s sustainable development based on inverse data envelopment analysis. J. Clean. Prod. 142, 1638–1649 (2017)

    Article  Google Scholar 

  11. Clinch, J.P., Dunne, L., Dresner, S.: Environmental and wider implications of political impediments to environmental tax reform. Energy Policy 34(8), 960–970 (2006). Social and political responses to ecological tax reform in Europe

    Article  Google Scholar 

  12. Cooper, W.W., Pastor, J.T., Borras, F., Aparicio, J., Pastor, D.: BAM: a bounded adjusted measure of efficiency for use with bounded additive models. J. Prod. Anal. 35(2), 85–94 (2011)

    Article  Google Scholar 

  13. Dasgupta, P., Maler, K.-G.: Net national product, wealth, and social well-being. Environ. Dev. Econ. 5(1), 69–93 (2000)

    Article  Google Scholar 

  14. DiMaria, C.-H.: Sustainability matters. Qual. Quantity 48(3), 1257–1269 (2014)

    Article  Google Scholar 

  15. DiMaria, C.-H.: An indicator for the economic performance and ecological sustainability of nations. Environ. Model. Assess. (2018). https://doi.org/10.1007/s10666-018-9626-2

  16. Dong, B., Wei, W., Ma, X., Li, P.: On the impacts of carbon tax and technological progress on China. Appl. Econ. 50(4), 389–406 (2017)

    Article  Google Scholar 

  17. Dyckhoff, H., Allen, K.: Measuring ecological efficiency with data envelopment analysis. Eur. J. Oper. Res. 132(2), 312–325 (2001). Data envelopment analysis

    Article  Google Scholar 

  18. Emrouznejad, A., Yang, G.: A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 61, 4–8 (2018)

    Google Scholar 

  19. Gavin, M.K.: Labor Market Rigidities and Unemployment: The Case of Severance Costs. Technical report (1986)

  20. Goulder, L.H., Parry, I.W.H.: Instrument choice in environmental policy. Rev. Environ. Econ. Policy 2(2), 152–174 (2008)

    Article  Google Scholar 

  21. Grzebyk, M., Stec, M.: Sustainable development in EU countries: concept and rating of levels of development. Sustain. Dev. 23(2), 110–123 (2015). SD-15-0022

    Google Scholar 

  22. Guan, J., Zuo, K.: A cross-country comparison of innovation efficiency. Scientometrics 100(2), 541–575 (2014)

    Article  Google Scholar 

  23. Hamilton, K.: Genuine savings rates in developing countries. World Bank Econ. Rev. 13(2), 333–356 (1999)

    Article  Google Scholar 

  24. Hanley, N., Dupuy, L., McLaughlin, E.: Genuine savings and sustainability. J. Econ. Surv. 29(4), 779–806 (2015)

    Article  Google Scholar 

  25. Hediger, W.: Sustainable development and social welfare. Ecol. Econ. 32(3), 481–492 (2000)

    Article  Google Scholar 

  26. Henderson, D.J., Russell, R.R.: Human capital and convergence: a production-frontier approach. Int. Econ. Rev. 46(4), 1167–1205 (2005)

    Article  Google Scholar 

  27. Lepinteur, A.: The shorter workweek and worker wellbeing: evidence from Portugal and France. Labour Econ. (2018). https://doi.org/10.1016/j.labeco.2018.05.010

  28. Lewis, J., Giullari, S.: The adult worker model family, gender equality and care: the search for new policy principles and the possibilities and problems of a capabilities approach. Econ. Soc. 34(1), 76–104 (2005)

    Article  Google Scholar 

  29. Liu, G., Brown, M.T., Casazza, M.: Enhancing the sustainability narrative through a deeper understanding of sustainable development indicators. Sustainability 9(6), 1078 (2017)

    Article  Google Scholar 

  30. Loayza, N., Schmidt-Hebbel, K., Servn, L.: What drives private saving across the world? Rev. Econ. Stat. 82(2), 165–181 (2000)

    Article  Google Scholar 

  31. Lopez, J.H., Schmidt-Hebbel, K., Servn, L.: How effective is fiscal policy in raising national saving? Rev. Econ. Stat. 82(2), 226–238 (2000)

    Article  Google Scholar 

  32. Lovell, C.K., Pastor, J.T.: Units invariant and translation invariant DEA models. Oper. Res. Lett. 18(3), 147–151 (1995)

    Article  Google Scholar 

  33. Morse, S.: Developing sustainability indicators and indices. Sustain. Dev. 23(2), 84–95 (2015). SD-14-0072.R3

    Google Scholar 

  34. Pillarisetti, J.: The World Bank’s genuine savings measure and sustainability. Ecol. Econ. 55(4), 599–609 (2005)

    Article  Google Scholar 

  35. Premik, F., Stanisawska, E.: The impact of inflation expectations on polish consumers spending and saving. East. Eur. Econ. 55(1), 3–28 (2017)

    Article  Google Scholar 

  36. Pullinger, M.: Working time reduction policy in a sustainable economy: criteria and options for its design. Ecol. Econ. 103, 11–19 (2014)

    Article  Google Scholar 

  37. Ray, S.C., Desli, E.: Productivity growth, technical progress, and efficiency change in industrialized countries: comment. Am. Econ. Rev. 87(5), 1033–1039 (1997)

    Google Scholar 

  38. Ray, S.C., Kim, H.J.: Cost efficiency in the US steel industry: a nonparametric analysis using data envelopment analysis. Eur. J. Oper. Res. 80(3), 654–671 (1995). Productivity analysis: parametric and non-parametric applications

    Article  Google Scholar 

  39. Shen, W., Zhang, D., Liu, W., Yang, G.: Increasing discrimination of dea evaluation by utilizing distances to anti-efficient frontiers. Comput. Oper. Res. 75, 163–173 (2016)

    Article  Google Scholar 

  40. Song, M., An, Q., Zhang, W., Wang, Z., Wu, J.: Environmental efficiency evaluation based on data envelopment analysis: a review. Renew. Sustain. Energy Rev. 16(7), 4465–4469 (2012)

    Article  Google Scholar 

  41. Swan, T.W.: Economic growth and capital accumulation. Econ. Rec. 32(2), 334–361 (1956)

    Article  Google Scholar 

  42. van der Horst, D.: NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies. Energy Policy 35(5), 2705–2714 (2007)

    Article  Google Scholar 

  43. Victor, P.A.: Indicators of sustainable development: some lessons from capital theory. Ecol. Econ. 4(3), 191–213 (1991)

    Article  Google Scholar 

  44. Wei, C., Ni, J., Sheng, M.: China’s energy inefficiency: a cross-country comparison. Soc. Sci. J. 48(3), 478–488 (2011). Chinese economy: issues and challenges

    Article  Google Scholar 

  45. Yamada, Y., Matsui, T., Sugiyama, M.: An inefficiency measurement method for management systems. J. Oper. Res. Soc. Jpn. 37(2), 158–168 (1994)

    Article  Google Scholar 

  46. Zhou, H., Yang, Y., Chen, Y., Zhu, J.: Data envelopment analysis application in sustainability: the origins, development and future directions. Eur. J. Oper. Res. 264(1), 1–16 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledge the support of the Observatoire de la Compétitivité, Ministère de l’Economie, DG Compétitivité, Luxembourg and STATEC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C.-H. DiMaria.

Additional information

Views and opinions expressed in this article are those of the author and do not reflect those of STATEC and funding partners.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

DiMaria, C. Sustainability, welfare and efficiency of nations. Qual Quant 53, 1141–1163 (2019). https://doi.org/10.1007/s11135-018-0809-3

Download citation

Keywords

  • Data envelopment analysis
  • Negative output
  • Anti efficient frontier
  • Weak sustainability
  • Welfare