Advertisement

Foreign arrivals nowcasting in Italy with Google Trends data

  • F. Antolini
  • L. Grassini
Article
  • 83 Downloads

Abstract

The development of the ICT has deeply transformed the tourism industry. ICT has become a key determinant for competitiveness that deeply impacts on marketing and communication strategies. Online Travel Agency is accumulating a huge mass of valuable information. Web Data (Big Data) can actually represent an up-to-date information, which can be used as a support to improve statistical information, especially for monitoring current phenomena, as arrivals, spent nights, or the average length of stay. In this respect, an interesting issue is the assessment of the contribution of Web data for forecasting tourism flows. Specifically, nowcasting is a special case of forecasting as it deals with the knowledge of the present, immediate past and very near future. The aim of the paper is to assess the effective advantage of Google Trends (GT) data in forecasting tourist arrivals in Italy. The analysis is related to monthly foreign arrivals in tourist accommodations facilities. Google Trends data are used to predict the monthly number of foreign arrivals released by the Italian national statistical office, which is the dependent variable. Specifically, we have assessed the contribution of lagged GT variables in a standard ARIMA model and in a time series regression model with seasonal dummies and autoregressive components.

Keywords

Nowcasting Tourism demand Google Trends data 

References

  1. Andreano, M., Benedetti, R., Postiglione, P., Savio, G.: On the use of Google Trend data as covariates in nowcasting: Sampling and modeling issues. In: Petrucci A., Verde, R. (eds.) SIS 2017. Statistics and Data Science: New Challenges, New Generations, Firenze (2017)Google Scholar
  2. Artola, C., Galán, E.: Tracking the future of the web: constructing of leading indicators using internet searches, Documentos Ocasionales n. 1203, Banco de Espana (2012). http://www.bde.es/f/webbde/SES/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosOcasionales/12/Fich/do1203e.pdf. Accessed 10 Feb 2017
  3. Artola, C., Pinto, F., de Pedraza Garcia, P.: Can internet searches forecast tourism flows? Int. J. Manpow. 36(1), 103–116 (2015)CrossRefGoogle Scholar
  4. Ashley, R.: Statistically significant forecasting improvement: how much out-of-sample data is likely necessary? Int. J. Forecast. 19(2), 229–239 (2003)CrossRefGoogle Scholar
  5. Askitas, N., Zimmermann, K.: Google econometrics and unemployment forecasting. Appl. Econ. Q. 55(2), 107–120 (2009)CrossRefGoogle Scholar
  6. Athanasopoulos, G., Hyndman, R., Song, H., Wu, D.C.: The tourism forecasting competition. Int. J. Forecast. 27(2011), 822–844 (2011)CrossRefGoogle Scholar
  7. Banbura, M., Giannone, D., Reichlin, L.: Nowcasting, working papers series no. 1275/December 2010, European Central Bank (2010)Google Scholar
  8. Bangwayo-Skeete, P., Skeete, R.W.: Can Google data improve the forecasting performance of tourist arrivals? Mixed data sampling approach. Tour. Manag. 46(2015), 454–464 (2015)CrossRefGoogle Scholar
  9. Butler, D.: When Google got flu wrong. Nature 494, 155–156 (2013)CrossRefGoogle Scholar
  10. Carrière-Swallow, Y., Labbé, F.: Nowcasting with Google Trends in emerging markets. J. Forecast. 32(4), 289–298 (2013)CrossRefGoogle Scholar
  11. Chai, T., Draxler, R.R.: Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)? Arguments against avoiding RMSE in the literature. Copernicus Publications on Behalf of the European Geosciences Union (2014)Google Scholar
  12. Choi, H., Varian, H.: Predicting the present with Google Trends, Google technical report (2009a). http://google.com/googleblogs/pdfs/google_predicting_the_present.pdf. Accessed 04 Feb 2017
  13. Choi, H., Varian, H. Predicting initial claims for unemployment insurance using Google Trends, Google technical report (2009b). https://static.googleusercontent.com/media/research.google.com/it//archive/papers/initialclaimsUS.pdf. Accessed 14 Sept 2017
  14. Choi, H., Varian, H.: Predicting the present with Google Trends. Econ. Rec. 88(s1), 2–9 (2012)CrossRefGoogle Scholar
  15. Cochrane, D., Orcutt, G.H.: Application of least squares regression to relationships containing autocorrelated error terms. J. Am. Stat. Assoc. 44, 32–61 (1949)Google Scholar
  16. Cottrel, A., Lucchetti, R.J.: Gretl User’s Guide: Gnu Regression, Econometrics and Time-Series Library (2017). http://gretl.sourceforge.net/gretl-help/gretl-guide.pdf. Accessed 27 March 2014
  17. Crouch, G.I.: Destination competitiveness: an analysis of determinant attributes. J. Travel Res. 50(1), 27–45 (2011)CrossRefGoogle Scholar
  18. Cryer, J., Kung-Sik, C.: Time Series Analysis With Applications in R. Springer Text in Statistics. Springer, Berlin (2008)Google Scholar
  19. Dufour, J.-M., Gaudry, J.I., Tran Cong Liem: The Cochrane–Orcutt procedure. Numerical examples of multiple admissible minima. Econ. Lett. 6, 43–48 (1980)CrossRefGoogle Scholar
  20. Engle, R., Granger, C.: Co-integration and error correction: representation, estimation and testing. Econometrica 55(2), 251–276 (1987)CrossRefGoogle Scholar
  21. European Commission: European tourism indicator system for sustainable destination: toolkit (2013). http://ec.europa.eu/growth/sectors/tourism/offer/sustainable/indicators_en. Accessed 09 March 2018
  22. European Commission: Flash Eurobarometer 2016. Preferences of European towards tourism (2016). http://ec.europa.eu/COMMFrontOffice/PublicOpinion. Accessed 01 Feb 2017
  23. Ferrante M.R.: Inferenza da campioni autoselezionati nella stima di modelli econometrici. In: Filippucci, C. (ed.) Tecnologie informatiche e fonti amministrative nella produzione di dati. Franco Angeli (2000)Google Scholar
  24. Fesenmaier, D., Xiang, Z., Pan, B., Law, R.: An analysis of search engine use for travel (2010). https://www.researchgate.net/publication/221357214. Accessed 04 Feb 2017
  25. Fischer, U., Schildt, C., Hartmann, C., Lehner, W.: Forecasting the data cube: a model configuration advisor for multi dimensional datasets. In: IEEE 29th international conference on data engineering (ICDE), Brisbane (2013)Google Scholar
  26. Fuchs, M., Hoepken, W., Lexhagen, M.: Big data analytics for knowledge generation in tourism destinations: a case from Sweden. J. Destin. Market. Manag. 3, 198–209 (2014)Google Scholar
  27. Goel, S., Hofman, J.M., Lahaie, S., Pennock, D.M., Watts, D.J.: Predicting consumer behavior with web search. PNAS 107(41), 17486–17490 (2010)CrossRefGoogle Scholar
  28. Goel, S., Hofman, J.M, Lahaie, S., Pennock, D.M., Watts, D.J.: What can search predict? In: 19th International world wide web conference (2016). http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7B5C4C1D1DA1F0567EE6DAC677BC38B5?doi=10.1.1.163.7367&rep=rep1&type=pdf
  29. Gunter, U., Önder, I.: Forecasting city arrival with Google analytics. Ann. Tour. Res. 61(C), 199–212 (2016)CrossRefGoogle Scholar
  30. Hall, C.M., Butler, R.W.: In search of common ground: reflections on sustainability: complexity and process in the tourism system: a discussion. J. Sustain. Tour. 3(2), 99–105 (1995)CrossRefGoogle Scholar
  31. Hall, C.M., Williams, A.M., Lew, A.: Issues: Tourism: conceptualizations, institutions and issues. In: Hall, C.M., Williams, A.M., Lew, A.A. (eds.) Companion to Tourism. Blackwell, Oxford (2004)Google Scholar
  32. Hassani, H., Silva, S.S.: Forecasting with Big Data: a review. Ann. Data Sci. 2(1), 5–19 (2015)CrossRefGoogle Scholar
  33. Hoa, C.-I., Lin, M.-H., Chen, H.-M.: Web users’ behavioural patterns of tourism information search: from online to offline. Tour. Manag. 33(6), 1468–1482 (2012)CrossRefGoogle Scholar
  34. Hyndman, R., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3) (2008). https://cran.r-project.org/web/packages/forecast/vignettes/JSS2008.pdf. Accessed 09 March 2018
  35. Jackman, M., Naitram, S.: Nowcasting tourist arrivals in Barbados—just Google it! Tour. Econ. 21(6), 1309–1313 (2015)CrossRefGoogle Scholar
  36. Lazer, D., Kennedy, R., King, K., Vespignani, A.: The parabole of Google flu traps in big data analysis. Science 343(6176), 1203–1205 (2014)CrossRefGoogle Scholar
  37. Li, G., Song, H., Witt, S.: Recent developments in econometric modeling and forecasting. J. Travel Res. 44(1), 82–99 (2005)CrossRefGoogle Scholar
  38. Magee, L.: A note on Cochrane-Orcutt estimation. J. Econom. 35(2–3), 211–218 (1987)CrossRefGoogle Scholar
  39. Matias, Á., Nijkamp, P., Sarmento, M.: Quantitative Methods in Tourism Economics. Physica-Verlag, Heidelberg (2013)CrossRefGoogle Scholar
  40. Pan, B., Fesenmaier, D.R.: Online information search: vacation planning process. Ann. Tour. Res. 33(3), 809–832 (2006)CrossRefGoogle Scholar
  41. Phillips, B., Ouliaris, S.: Asymptotic properties of residual based tests for cointegration. Econometrica 58(1), 165–193 (1990)CrossRefGoogle Scholar
  42. Raun, J., Ahas, R.: Defining usual environment with mobile tracking data. In: 14th Global forum on tourism statistics, 23–25 November 2016, Venice, Italy (2016). http://tsf2016venice.enit.it/images/articles/Papers_Forum/1.1_Defining%20usual%20environment%20with%20mobile%20tracking%20data.pdf. Accessed 09 March 2018
  43. Raun, J., Ahas, R., Tiru, M.: Measuring tourism destinations using mobile tracking data. Tour. Manag. 57, 202–212 (2016)CrossRefGoogle Scholar
  44. Rivera, R.: A dynamic linear model to forecast hotel registrations in Puerto Rico using Google Trends data. Tour. Manag. 57, 12–20 (2016)CrossRefGoogle Scholar
  45. Shirley, A.: The Distributed Lag Between Capital Appropriations and Expenditures. Econometrica 33(1), 178 (1965)CrossRefGoogle Scholar
  46. Shirley C., Rainer G., Manco G., Pievatolo A., Tort-Martorell X., Reis M.: How Can SMEs Benefit from Big Data? Challenges and a Path Forward. In: The ENBIS-15 Quality and Reliability Engineering International. Wiley (2016)Google Scholar
  47. Shoval, N., Isaacson, M.: Tracking tourists in the digital age. Ann. Tour. Res. 34(1), 141–159 (2007)CrossRefGoogle Scholar
  48. Signorelli, S., Reis, F., Biffignandi, S.: What attracts tourists while planning for a journey? In: 14th Global forum on tourism statistics, 23–25 November 2016, Venice, Italy (2016). http://tsf2016venice.enit.it/images/articles/Papers_Forum/2.4_What%20attracts%20tourists%20while%20planning%20for%20a%20journey%20-%20an%20analysis%20of%20three%20cities%20through%20Wikipedia%20page%20views.pdf. Accessed 09 March 2018
  49. Song, H., Li, G.: Tourism demand modelling and forecasting. A review of recent research. Tour. Manag. 29, 203–220 (2008)CrossRefGoogle Scholar
  50. Vosen, T., Schmidt, S.: Forecasting private consumption: survey-based indicators vs. Google Trends. Ruhr-Universität Bochum, Department of Economics (2009). http://repec.rwi-essen.de/files/REP_09_155.pdf. Accessed 10 Feb 2017
  51. Yang, Y., Fik, T.: Spatial effects in regional tourism growth. Ann. Tour. Res. 46(2014), 144–162 (2014)CrossRefGoogle Scholar
  52. Yoshimura, Y., Sobolevsky, S., Ratti, C.: An analysis of visitors’ behavior in The Louvre Museum: a study using Bluetooth data. Environ. Plan. 41, 1113–1131 (2014)CrossRefGoogle Scholar
  53. Zeileis, A.: Econometric Computing with HC and HAC Covariance Matrix Estimators. J. Stat. Softw. 11(10), 1–17 (2004)CrossRefGoogle Scholar
  54. Zhang, J., Jensen, C.: Comparative advantage. Explaining tourism flows. Ann. Tour. Res. 34, 223–243 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of TeramoTeramoItaly
  2. 2.University of FlorenceFlorenceItaly

Personalised recommendations