Building, coding and programming 3D models via a visual programming environment

  • Ana Mª Pinto-Llorente
  • Sonia Casillas-Martín
  • Marcos Cabezas-González
  • Francisco José García-Peñalvo


This paper presents the findings of a study conducted in the state-funded Infant, Primary and Secondary School Santísima Trinidad in Salamanca. The main objectives of the research were, to evaluate the use of the visual programming environment, Lego Education WeDo, in natural science and to know the benefits of the use of this tool to teach abstract concepts, solve problems and motivate students. In order to achieve these objectives, we used the case study method since we focused on individuals who represented the phenomenon of our interest, and explored and investigated in depth the phenomenon in its natural context bounded by time and space. In the research were involved a teacher and fifty-two students of 4th grade of primary education. The study found that the project developed was effective to help students to achieve the learning objectives of the unit, and also to begin building, coding and programming 3D models. The research showed the teacher’ fundamental role as a guide and students’ active role as builders, programmers, or presenters. There were evidences of the possibilities offered to acquire the skills of critical thinking, creative thinking, problem solving, reflection, collaboration, communication, and time management. Due to the positive results obtained in this study, it is recommended to incorporate computational thinking in primary education and in core content areas since it is fundamental in the current society.


Computational thinking Visual programming environment Lego Education WeDo Natural science Primary education Educational innovation 


  1. Ackermann, E.: Perspective-taking and object construction: Two keys to learning. In: Kafai, J., Resnick, M. (eds.) Constructionism in Practice: Designing, Thinking, and Learning in a Digital World, pp. 25–37. Lawrence Erlbaun Publishers, Mahwah (1996)Google Scholar
  2. Ackermann, E.: Constructing knowledge and transforming the world. In: Tokoro, M., Steels, L. (eds.) A Learning Zone of One’s Own: Sharing Representations and Flow in Collaborative Learning Environments, pp. 15–37. IOS Press, Washington, DC (2004)Google Scholar
  3. Ackermann, E., Gauntlett, D., Weckstrom, C.: Defining Systematic Creativity: Explaining the Nature of Creativity and How the LEGO System of Play Relates to it. The LEGO Learning Institute, Billund (2009)Google Scholar
  4. Atmatzidou, S., Demetriadis, S.: Evaluating the role of collaboration scripts as group guiding tools in activities of eduational robotics. In: Proceedings of 2012 IEEE 12th International Conference on Advanced Learning Technologies (ICALT), pp. 298–302 (2012)Google Scholar
  5. Barak, M., Zadok, Y.: Robotics projects and learning concepts in science, technology and problem solving. Int. J. Technol. Des. Educ. 19, 289–307 (2009)CrossRefGoogle Scholar
  6. Barker, B.S., Ansorge, J.: Robotics as means to increase achievement scores in an informal learning environment. J. Res. Technol. Educ. (2007). doi: 10.1080/15391523.2007.10782481
  7. Basawapatna, A.R. et al.: Using scalable game design to teach computer science from middle school to graduate school. In: Proceedings of the 15th Annual ACM Conference on Innovation and Technology in Computer Science Education, pp. 26–30 (2010). doi: 10.1145/1822090.1822154
  8. Bers, M.U., et al.: Computational thinking and tinkering: exploration of an early childhood robotics curriculum. Comput. Educ. (2014). doi: 10.1016/j.compedu.2013.10.020 Google Scholar
  9. Brown, J.S., Collins, A., Duguid, P.: Situated cognition and the culture of learning. Educ. Res. (1989). doi: 10.3102/0013189X018001032 Google Scholar
  10. Bundy, A.: Computational thinking is pervasive. J. Sci. Pract. Comput. 1, 67–69 (2007)Google Scholar
  11. Butler-Kisber, L.: Editorial. Learn. Landsc. 6, 9–17 (2013)Google Scholar
  12. Castledine, A., Chalmers, C.: LEGO robotics: an authentic problem solving tool? Des. Technol. Educ. 16, 19–27 (2011)Google Scholar
  13. Cuny, J., Snyder, L. & Wing, J.M.: Demystifying computational thinking for noncomputer scientists. Work in progress (2010)Google Scholar
  14. Duffy, T.M., Cunningham, D.J.: Constructivism: implications for the design and delivery of instruction. In: Jonassen, D.H. (ed.) Handbook of Research for Educational Communications and Technology, pp. 170–198. Macmillan Library Reference, New York (1996)Google Scholar
  15. Elkin, M., Sullivan, A., Bers, M.U.: Implementing a robotics curriculum in an early childhood Mon- tessori classroom. J. Inf. Technol. Educ. Innov. Pract. 13, 153–169 (2014)Google Scholar
  16. Espino, E.E., González, C.S.: Estudio sobre diferencias de género en las competencias y las estrategias educativas para el desarrollo del pensamiento computacional. Revista de Educación a Distancia (2015). doi: 10.6018/red/46/12 Google Scholar
  17. Flores, A.: Desarrollo del pensamiento computacional en la formación en matemática discreta. Lámpsakos 5, 28–33 (2011)Google Scholar
  18. García-Peñalvo, F.J.: What computational thinking is. J. Inf. Technol. Res. 9, v–viii (2016a)Google Scholar
  19. García-Peñalvo, F.J.: Proyecto TACCLE3-Coding. In: García-Peñalvo, F.J., Mendes, J.A. (eds.) XVIII Simposio Internacional de Informática Educativa, SIIE 2016, pp. 187–189. Ediciones Universidad de Salamanca, Salamanca (2016b)Google Scholar
  20. García-Peñalvo, F.J.: Presentación del Proyecto TACCLE3 Coding. V Congreso español de informática. Workshop Educación en Informática Sub 18(EI<18), 14–16 (2016c)Google Scholar
  21. García-Peñalvo, F.J: A brief introduction to TACCLE 3—Coding European Project. In: XVIII International Symposium on Computers and Education—SIIE 2016, pp. 14–16 (2016d)Google Scholar
  22. García-Valcárcel, A.: Investigación educativa centrada en estudio de casos: evaluación y seguimiento de proyectos de aprendizaje colaborativo mediado por TIC en el ámbito escolar. In: García-Valcárcel, A. (coord.) Proyectos de trabajo colaborativo con TIC, pp. 31–41. Editorial Síntesis, Madrid (2015)Google Scholar
  23. Ghitis, T., Alba, J.A.: Los robots llegan a las aulas. Revista Infancias imágenes 13, 143–147 (2014)Google Scholar
  24. Goikhman, A. et al.: Designing collaborations: could design probes contribute to better communication between collaborators? In: TEEM’16: Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality, pp. 1219–1222 (2016). doi: 10.1145/3012430.3012431
  25. Hafner, C.A., et al.: Digital literacies and language learning. Lang. Learn. Technol. 19, 1–7 (2015)Google Scholar
  26. Kazimoglu, C., Kiernan, M., Bacon, L., Mackinnon, L.: Understanding computational thinking before programming: developing guidelines for the design of games to learn introductory programming through game-play. Int. J. Game-Based Learn. (IJGBL) (2011). doi: 10.4018/ijgbl.2011070103 Google Scholar
  27. Kolb, D.A.: Experiential Learning: Experience as the Source of Learning and Development. Prentice-Hall, New Jersey (1984)Google Scholar
  28. Lamoyi, L.B.: La robótica Lego Mindstorms: un recurso didáctico para fortalecer el pensamiento lógico matemático. Perspectiva docente. 47, 12–17 (2012)Google Scholar
  29. Lee, I., et al.: Computational thinking for youth in practice. ACM Inroads 2, 32–37 (2011)CrossRefGoogle Scholar
  30. Liu, J., Wang, L.: Computational Thinking in Discrete Mathematics. In: IEEE Xplore Conference: 2nd International Workshop on Education Technology and Computer Science, pp. 413–416 (2010). doi: 10.1109/ETCS.2010.200
  31. Llorens, F.: Dicen por ahí… que la nueva alfabetización pasa por la programación. Revista de Investigación en Docencia Universitaria de la Informática. 8, 11–14 (2015)Google Scholar
  32. Lu, J.J., Fletcher, G.H.L.: Thinking about computational thinking. In: SIGCSE’09: Proceedings of the 40th ACM Technical Symposium on Computer Science Education, pp. 260–264 (2009)Google Scholar
  33. Mayerová, K.: Pilot activities: LEGO WeDo at primary school. In: Proceedings of 3rd International Workshop Teaching Robotics, Teaching with Robotics: Integrating Robotics in School Curriculum, pp. 32–39 (2012)Google Scholar
  34. Merriam, S.B.: Case Study Research in Education: a Qualitative Approach. Jossey Bass, San Francisco (1988)Google Scholar
  35. Merriam, S.B.: Qualitative Research and Case Study Applications in Education. Jossey-Bass Publishers, San Francisco (1998)Google Scholar
  36. Papert, S.: Mindstorms: Children, Computers and Powerful Ideas. Basic books, New York (1980)Google Scholar
  37. Pérez, G.: Investigación cualitativa: Retos, interrogantes y métodos. La Muralla, Madrid (1994)Google Scholar
  38. Perkovic, L. et al.: A framework for computational thinking across the curriculum. In: Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Computer Science Education, pp. 123–127 (2010)Google Scholar
  39. Pinto-Llorente, A.M., et al.: Students’ perceptions and attitudes towards asynchronous technological tools in blended-learning training to improve grammatical competence in english as a second language. Comput. Hum. Behav. (2016a). doi: 10.1016/j.chb.2016.05.071 Google Scholar
  40. Pinto-Llorente, A.M., Casillas-Martín, S., Cabezas-Martín, M., García-Peñalvo, F.J.: Developing computational thinking via the visual programming tool: Lego Education WeDo. In: TEEM’16: Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality, pp. 45–50 (2016b). doi: 10.1145/3012430.3012495
  41. Qualls, J.A., Sherrell, L.B.: Why computational thinking should be integrated into the curriculum. J. Comput. Sci. Coll. 25, 66–71 (2010)Google Scholar
  42. Roschelle, J., Teasley, S.D.: The construction of shared knowledge in collaborative problem solving. In: O’Malley, C. (ed.) Computer-Supported Collaborative Learning, pp. 69–97. Springer, Berlin (1995)CrossRefGoogle Scholar
  43. Royal Society: Shut down or restart: the way forward for computing in UK schools (2012) Accessed 16 Dec 2016
  44. Sorbi, L. et al.: An innovative program to teach robotics at the primary school. In: Proceedings of the Conference-Workshop Bio-inspired Robotics, pp. 13–18 (2014)Google Scholar
  45. Valverde, J., Fernández, M.R., Garrido, M.C.: El pensamiento computacional y las nuevas ecologías del aprendizaje. Revista de Educación a Distancia (2015). doi: 10.6018/red/46/3 Google Scholar
  46. Veselovskà, M., Mayerovà, K.: Programming with motion sensor using Lego WeDo at Lower Secondary School. Int. J. Inf. Commun. Technol. Educ. (2016). doi: 10.1515/ijicte-2015-0013 Google Scholar
  47. Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological Processes. Harvard University Press, Cambridge, Massachusetts (1978)Google Scholar
  48. Wing, J.M.: Computational Thinking. Commun. ACM 49, 33–35 (2006)CrossRefGoogle Scholar
  49. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Beverly Hills (1984)Google Scholar
  50. Yin, R.K.: Case Study Research: Design and Methods. Applied Social Research Series. Sage, London (1989)Google Scholar
  51. Zapata-Ros, M.: Pensamiento computacional: una nueva alfabetización digital. Revista de Educación a Distancia (2015). doi: 10.6018/red Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Ana Mª Pinto-Llorente
    • 1
  • Sonia Casillas-Martín
    • 2
  • Marcos Cabezas-González
    • 2
  • Francisco José García-Peñalvo
    • 3
  1. 1.Faculty of EducationPontifical University of SalamancaSalamancaSpain
  2. 2.Faculty of EducationUniversity of SalamancaSalamancaSpain
  3. 3.Faculty of SciencesUniversity of SalamancaSalamancaSpain

Personalised recommendations