Validation of a social cohesion theoretical framework: a multiple group SEM strategy

Article
  • 83 Downloads

Abstract

Social cohesion dates back to the end of the nineteenth century. Back then, society experienced epochal transformations, as are also happening nowadays. Whenever there are epochal changes, a social order (cohesion) matter arises. The paper provides a conceptual scheme of social cohesion identifying its constituent dimensions subdivided by three spheres (macro, meso, micro) and two perspectives (objective and subjective). The overarching aim is to test the validity of the operationalization of the social cohesion model provided. Firstly, we conducted an exploratory factor analysis introducing an approach implemented in Mplus named exploratory structural equation modeling that shows several useful characteristics. Afterward, through a structural equation modeling approach, we performed several confirmatory factor analyses adopting a multiple group SEM strategy in order to cross-validate the social cohesion model.

Keywords

Social cohesion Structural equation modeling Multiple group SEM 

References

  1. Asparouhov, T., Muthen, B.: Computationally efficient estimation of multilevel high-dimensional latent variable models. In: Proceedings of the 2007 JSM Meeting in Salt Lake City, Utah, Section on Statistics in Epidemiology, pp. 2531–2535 (2007)Google Scholar
  2. Asparouhov, T., Muthén, B.: Exploratory structural equation modeling. Struct. Equ. Model. 16(3), 397–438 (2009)CrossRefGoogle Scholar
  3. Bentler, P.M.: Comparative fit indexes in structural models. Psychol. Bull. 107(2), 238–246 (1990)CrossRefGoogle Scholar
  4. Bentler, P.M.: On the fit of models to covariances and methodology to the Bulletin. Psychol. Bull. 112(3), 400 (1992)CrossRefGoogle Scholar
  5. Berger-Schmitt, R.: Social cohesion as an aspect of the quality of societies: concept and measurement. Eureporting Working Paper n°14 (Centre for Survey Research and Methodology, Mannheim) (2000)Google Scholar
  6. Berger-Schmitt, R.: Considering social cohesion in quality of life assessments: concept and measurement. Soc. Indic. Res. 58, 403–428 (2002)CrossRefGoogle Scholar
  7. Bernard, P.: Social cohesion: a dialectical critique of a quasi-concept. Paper SRA-491, Ottawa: Strategic Research and Analysis Directorate. Department of Canadian Heritage (1999)Google Scholar
  8. Bollen, K.A.: Structural Equations with Latent Variables. Wiley, New York (1989)CrossRefGoogle Scholar
  9. Bollen, K.A., Hoyle, R.H.: Perceived cohesion: a conceptual and empirical examination. Soc. Forces 69, 479–504 (1990)CrossRefGoogle Scholar
  10. Browne, M.W.: An overview of analytic rotation in exploratory factor analysis. Multivar. Behav. Res. 36(1), 111–150 (2001)CrossRefGoogle Scholar
  11. Browne, M.W., Cudeck, R.: Single sample cross-validation indices for covariance structures. Multivar. Behav. Res. 24(4), 445–455 (1989)CrossRefGoogle Scholar
  12. Browne, M.W., Cudeck, R.: Alternative ways of assessing model fit. In: Bollen, K.A., Long, J.S. (eds.) Testing Structural Equation Models, pp. 136–162. Sage, Newbury Park (1993)Google Scholar
  13. Chan, J., To, H.P., Chan, E.: Reconsidering social cohesion: developing a definition and analytical framework for empirical research. Soc. Indic. Res. 75(2), 273–302 (2006)CrossRefGoogle Scholar
  14. Chen, F.F., Sousa, K.H., West, S.G.: Testing measurement invariance of second-order factor models. Struct. Equ. Model. 12(3), 471–492 (2005)CrossRefGoogle Scholar
  15. Cudeck, R., Browne, M.W.: Cross-validation of covariance structures. Multivar. Behav. Res. 18(2), 147–167 (1983)CrossRefGoogle Scholar
  16. Dickes, P., Valentova, M., Borsenberger, M.: Construct validation and application of a common measure of social cohesion in 33 European countries. Soc. Indic. Res. 98(3), 451–473 (2010)CrossRefGoogle Scholar
  17. Dickes, P., Valentova, M.: Construction, validation and application of the measurement of social cohesion in 47 European countries and regions. Soc. Indic. Res. 113(3), 827–846 (2013)CrossRefGoogle Scholar
  18. Duhaime, G., Searles, E., Usher, P.J., Myers, H., Frechette, P.: Social cohesion and living conditions in the Canadian Arctic: from theory to measurement. Soc. Indic. Res. 66(3), 295–318 (2004)CrossRefGoogle Scholar
  19. Dunteman, G.H.: Principal Components Analysis. Sage, Newbury Park (1989)CrossRefGoogle Scholar
  20. Durkheim, E.: De la division du travail social: étude sur l’organisation des sociétés supérieures. Presses Universitaires de France (1893)Google Scholar
  21. European Commission: Sixth Report on economic, social and territorial cohesion, Bruxelles (2014)Google Scholar
  22. Union, European: First Report on Economic and Social Cohesion 1996. Office for Official Publications of the European Communities, Luxembourg (1996)Google Scholar
  23. Friedkin, N.E.: Social cohesion. Annu. Rev. Sociol. 30, 409–425 (2004)CrossRefGoogle Scholar
  24. Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973)CrossRefGoogle Scholar
  25. Hox, J.J., Bechger, T.M.: An introduction to structural equation modeling. Fam. Sci. Rev. 11, 354–373 (1998)Google Scholar
  26. Jeannotte, M.S.: Social Cohesion Around the World: An International Comparison of Definitions and Issues. Strategic Research and Analysis. Canadian Heritage, Ottawa (2000)Google Scholar
  27. Jenson, J.: Mapping social cohesion: the state of Canadian research. Paper SRA-321, Family Network, Canadian Policy Research Networks Inc. (1998)Google Scholar
  28. Jöreskog, K.G., Sörbom, D.: LISREL 8: Structural equation modeling with the SIMPLIS command language. Scientific Software International, Lincolnwood, Illinois (1993)Google Scholar
  29. Kenny, D.A., McCoach, D.B.: Effect of the number of variables on measures of fit in structural equation modeling. Struct. Equ. Model. 10(3), 333–351 (2003)CrossRefGoogle Scholar
  30. Le Bon, G.: Psychologie des Foules. Alcan, Paris (1895)Google Scholar
  31. Lockwood, D.: Civic integration and social cohesion. In: Gough, I. (ed.) Capitalism and Social Cohesion, pp. 63–84. Palgrave Macmillan, New York (1999)CrossRefGoogle Scholar
  32. MacCallum, R.C., Roznowski, M., Necowitz, L.B.: Model modifications in covariance structure analysis: the problem of capitalization on chance. Psychol. Bull. 111(3), 490 (1992)CrossRefGoogle Scholar
  33. MacCallum, R.C., Browne, M.W., Sugawara, H.M.: Power analysis and determination of sample size for covariance structure modeling. Psychol. Methods 1(2), 130 (1996)CrossRefGoogle Scholar
  34. Marsh, H.W., Hocevar, D.: Application of confirmatory factor analysis to the study of self-concept: first-and higher order factor models and their invariance across groups. Psychol. Bull. 97(3), 562 (1985)CrossRefGoogle Scholar
  35. Marsh, H.W., Muthén, B., Asparouhov, T., Lüdtke, O., Robitzsch, A., Morin, A.J., Trautwein, U.: Exploratory structural equation modeling, integrating CFA and EFA: application to students’ evaluations of university teaching. Struct. Equ. Model. 16(3), 439–476 (2009)CrossRefGoogle Scholar
  36. Marsh, H.W., Lüdtke, O., Nagengast, B., Morin, A.J., Von Davier, M.: Why item parcels are (almost) never appropriate: two wrongs do not make a right—camouflaging misspecification with item parcels in CFA models. Psychol. Methods 18(3), 257 (2013)CrossRefGoogle Scholar
  37. Marsh, H.W., Morin, A.J., Parker, P.D., Kaur, G.: Exploratory structural equation modeling: an integration of the best features of exploratory and confirmatory factor analysis. Annu. Rev. Clin. Psychol. 10, 85–110 (2014)CrossRefGoogle Scholar
  38. Meredith, W.: Measurement invariance, factor analysis and factorial invariance. Psychometrika 58(4), 525–543 (1993)CrossRefGoogle Scholar
  39. Merton, R.K.: Social Theory and Social Structure. Free Press, New York (1949)Google Scholar
  40. Morin, A.J., Marsh, H.W., Nagengast, B.: Exploratory structural equation modeling: an introduction. In: Hancock, G.R., Mueller, R.O. (eds.) Structural Equation Modeling: A Second Course, 2nd edn, pp. 395–436. Greenwich, CT, IAP (2013)Google Scholar
  41. Muthén, B.: A general structural equation model with dichotomous, ordered, categorical and continuous latent variable indicators. Psychometrika 49(1), 115–132 (1984)CrossRefGoogle Scholar
  42. Noll, H.H.: Towards a European system of social indicators: theoretical framework and system architecture. Soc. Indic. Res. 58(1–3), 47–87 (2002)Google Scholar
  43. Parsons, T.: The Social System. Free Press, Chicago (1951)Google Scholar
  44. Putnam, R.D.: Bowling Alone: The Collapse and Revival of American Community. Simon and Schuster, New York (2001)Google Scholar
  45. Social, Health and Family Affairs Committee: Fighting Social Exclusion and Strengthening Social Cohesion in Europe. Parliamentary Assembly of the Council of Europe, Strasbourg (1998)Google Scholar
  46. Steiger, J.H., Lind, J.C.: Statistically based tests for the number of common factors. In: Annual Meeting of the Psychometric Society, Iowa City, IA, vol. 758 (1980)Google Scholar
  47. Rindskopf, D., Rose, T.: Some theory and applications of confirmatory second-order factor analysis. Multiv. Behav. Res. 23(1), 51–67 (1988)CrossRefGoogle Scholar
  48. Whittaker, T.A., Stapleton, L.M.: The performance of cross-validation indices used to select among competing covariance structure models under multivariate nonnormality conditions. Multivar. Behav. Res. 41(3), 295–335 (2006)CrossRefGoogle Scholar
  49. Widaman, K.F., Reise, S.P.: Exploring the measurement invariance of psychological instruments: applications in the substance use domain. In: Bryant, K.J., Windle, M., West, S.G. (eds.) The Science of Prevention: Methodological Advances from Alcohol and Substance Abuse Research, pp. 281–324. American Psychological Association, Washington (1997)CrossRefGoogle Scholar
  50. Whelan, C.T., Maître, B.: Economic vulnerability, multidimensional deprivation and social cohesion in an enlarged European community. Int. J. Comp. Sociol. 46(3), 215–239 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.“La Sapienza” Università di RomaRomaItaly

Personalised recommendations