Skip to main content

Artificial neural networks and fuzzy time series forecasting: an application to air quality

Abstract

The arising air pollution has addressed much attention globally due to its detrimental effects on human health and environment. As an early warning system for air quality control and management, it is important to provide precise information about the future concentrations in pollutants. We present here a time series model in predicting the Air Pollution Index (API) from three different stations; industrial, residential, and sub-urban areas between 2000 and 2009. In this paper, the Box–Jenkins approach of seasonal autoregressive integrated moving average (ARIMA), artificial neural network (ANN), and three models of fuzzy time series (FTS) have been compared by using the mean absolute percentage error, mean absolute error, mean square error, and root mean square error. Although all the methods were used as operational tools, the ANN seemed more accurate in forecasting API. The results showed that FTS (i.e. Chen’s, Yu’s, and Cheng’s) performed inconsistent results since the conventional methods of ARIMA outperformed the performance of FTS. However, consistent results were achieved as the ANNs gave the smallest forecasting error compared to FTS and ARIMA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Afroz, R., Hassan, M.N., Ibrahim, N.A.: Review of air pollution and health impacts in Malaysia. Environ. Res. 92(2), 71–77 (2003)

    Article  Google Scholar 

  2. Armstrong, J.S., Collopy, F.: Error measures for generalizing about forecasting methods: empirical comparisons. Int. J. Forecast. 8(1), 69–80 (1992). doi:10.1016/0169-2070(92)90008-w

    Article  Google Scholar 

  3. Bernard, E.A.: F.: Fuzzy approaches to environmental decisions: application to air quality. Environ. Sci. Policy 9(1), 22–31 (2006). doi:10.1016/j.envsci.2005.08.006

    Article  Google Scholar 

  4. Bernard, F.: Fuzzy environmental decision-making: applications to air pollution. Atmos. Environ. 37(14), 1865–1877 (2003). doi:10.1016/s1352-2310(03)00028-1

    Article  Google Scholar 

  5. Caselli, M., Trizio, L., Gennaro, Gd, Ielpo, P.: A simple feedforward neural network for the PM10 forecasting: comparison with a radial basis function network and a multivariate linear regression model. Water Air Soil Pollut. 201, 365–377 (2009). doi:10.1007/s11270-008-9950-2

    Article  Google Scholar 

  6. Chen, S.M.: Forecasting enrollments based on high-order fuzzy time series. Cybern. Syst. 33(1), 1–16 (2002)

    Article  Google Scholar 

  7. Cheng, C.-H., Chen, T.-L., Teoh, H.J., Chiang, C.-H.: Fuzzy time-series based on adaptive expectation model for TAIEX forecasting. Expert Syst. Appl. 34(2), 1126–1132 (2008)

    Article  Google Scholar 

  8. Cryer, J.D.: Time Series Analysis, 1st edn. Duxbury Press, Belmont (1986)

    Google Scholar 

  9. Faraway, J., Chatfield, C.: Time series forecasting with neural networks: a comparative study using the air line data. J. R. Stat. Soc.: Series C 47(2), 231–250 (1998). doi:10.1111/1467-9876.00109

    Article  Google Scholar 

  10. Hanke, J.E., Wichern, D.W.: Business Forecasting, 8th edn. Pearson/Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  11. Hassanzadeh, S., Hosseinibalam, F., Alizadeh, R.: Statistical models and time series forecasting of sulfur dioxide: a case study Tehran. Environ. Monit. Assess. 155(1), 149–155 (2009). doi:10.1007/s10661-008-0424-1

    Article  Google Scholar 

  12. Heo, J.-S., Kim, D.-S.: A new method of ozone forecasting using fuzzy expert and neural network systems. Sci. Total Environ. 325(1–3), 221–237 (2004). doi:10.1016/j.scitotenv.2003.11.009

    Article  Google Scholar 

  13. Hui-Kuang, Y.: Weighted fuzzy time series models for TAIEX forecasting. Phys. A: Stat. Mech. Appl. 349(3–4), 609–624 (2005)

    Google Scholar 

  14. Ibrahim, M.Z., Zailan, R., Ismail, M., Lola, M.S.: Forecasting and time series analysis of air pollutants in several area of Malaysia. Am. J. Environ. Sci. 5(5), 625–632 (2009). doi:10.3844/ajessp.2009.625.632

    Article  Google Scholar 

  15. Kampa, M., Castanas, E.: Human health effects of air pollution. Environ. Pollut. 151(2), 362–367 (2008)

    Article  Google Scholar 

  16. Kumar, A., Goyal, P.: Forecasting of daily air quality index in Delhi. Sci. Total Environ. 409(24), 5517–5523 (2011). doi:10.1016/j.scitotenv.2011.08.069

    Article  Google Scholar 

  17. Kurt, A., Oktay, A.B.: Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. Expert Syst. Appl. 37(12), 7986–7992 (2010)

    Article  Google Scholar 

  18. Morabito, F.C., Versaci, M.: Fuzzy neural identification and forecasting techniques to process experimental urban air pollution data. Neural Netw. 16(3–4), 493–506 (2003). doi:10.1016/s0893-6080(03)00019-4

    Article  Google Scholar 

  19. Perez, P., Salini, G.: PM2.5 Forecasting in a large city: comparison of three methods. Atmos. Environ. 42(35), 8219–8224 (2008)

    Article  Google Scholar 

  20. Rizzo, A., Glasson, J.: Iskandar Malaysia. Cities(0) (2011). doi:10.1016/j.cities.2011.03.003

  21. Sansuddin, N., Ramli, N., Yahaya, A., Yusof, N., Ghazali, N., Madhoun, W.: Statistical analysis of PM10 concentrations at different locations in Malaysia. Environ. Monit. Assess. 180(1), 573–588 (2011). doi:10.1007/s10661-010-1806-8

    Article  Google Scholar 

  22. Shyi-Ming, C.: Forecasting enrollments based on fuzzy time series. Fuzzy Sets Syst. 81(3), 311–319 (1996)

    Article  Google Scholar 

  23. Song, Q., Chissom, B.S.: Forecasting enrollments with fuzzy time series – Part I. Fuzzy Sets Syst. 54(1), 1–9 (1993a)

    Article  Google Scholar 

  24. Song, Q., Chissom, B.S.: Fuzzy time series and its models. Fuzzy Sets Syst. 54(3), 269–277 (1993b)

    Article  Google Scholar 

  25. Wang, X.K., Lu, W.Z.: Seasonal variation of air pollution index: Hong Kong case study. Chemosphere 63(8), 1261–1272 (2006)

    Article  Google Scholar 

  26. World Resources Institute: (2002) Rising Energy Use: Health Effects of Air Pollution. World Resources Institute. http://www.airimpacts.org (2002). Accessed January 10, 2011

  27. Zhang, G., Eddy Patuwo, B., Hu, M.Y.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14(1), 35–62 (1998). doi:10.1016/s0169-2070(97)00044-7

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Hisyam Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahman, N.H.A., Lee, M.H., Suhartono et al. Artificial neural networks and fuzzy time series forecasting: an application to air quality. Qual Quant 49, 2633–2647 (2015). https://doi.org/10.1007/s11135-014-0132-6

Download citation

Keywords

  • Artificial neural network
  • Air Pollution Index (API)
  • Time series
  • Forecasting
  • Fuzzy time series
  • ARIMA