Skip to main content

Advertisement

Log in

An interval fuzzy land-use allocation model (IFLAM) for Beijing in association with environmental and ecological consideration under uncertainty

  • Published:
Quality & Quantity Aims and scope Submit manuscript

Abstract

In this study, an interval fuzzy land-use allocation method (IFLAM) is developed for the planning of urban land-use allocation system. The developed IFLAM method is based on interval parameter programming technique and fuzzy flexible programming, which could handle uncertainties expressed as interval values and fuzzy sets in the model’s left-and right-hand sides and objective function. A management problem for allocating land resources of Beijing, the capital of China, is studied to illustrate applicability of the proposed IFLAM approach. Results show that the optimized \(\lambda \) values (which means the satisfaction degree of all model constraints) are in the range of [0.67, 0.89], and the corresponding system benefit is between $ [534.03, 698.75] \(\times \) \(10^{12}\) and $ [961.37, 1028.33] \(\times ~10^{12}\) while the optimized urban land in the first studying period will be [71905, 77894] ha in the Function Central Zone, [35219, 39711] ha in the Function Extended Zone, [22012, 30547] ha in the New Urban Zone and [17609, 22910] ha in the Eco-Conservation Zone. Results indicate that reasonable solutions have been generated under various environmental, ecological and social conditions. They can help decision makers to identify desired alternatives for making the utmost of land resources of Beijing and for providing services for urban land management decisions; moreover, they are helpful for land managers to gain insight into the tradeoff between economic objective and eco-environment violation risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bagdanaviciute, I., Valiunas, J.: GIS-based land suitability analysis integrating multi-criteria evaluation for the allocation of potential pollution sources. Environ. Earth Sci. 68, 1797–1812 (2013)

    Article  Google Scholar 

  • Beijing Municipal Bureau of Land and Resource, 2006–2020: Beijing Land Use Planning. http://www.bjgtj.gov.cn/publish/portal0/tab5228/info60349.htm (2006–2020). Accessed 1 Sept 2014

  • Beijing Municipal Environmental Protection Bureau: Environmental Situation Bulletin. http://www.bjepb.gov.cn/bjepb/323474/324034/324735/index.html (2004–2013). Accessed 1 Sept 2014

  • Beijing Statistical Bureau: Beijing statistical yearbook. China Statistics Press. http://tongji.cnki.net/kns55/Navi/HomePage.aspx?id=N2010090572&name=YOFGE&floor=1 (2004–2013). Accessed 1 Sept 2014

  • Benabdallah, S., Wright, J.R.: Multiple subregion allocation models. J. Urban Plan. D-ASCE. 118, 24–40 (1992)

    Article  Google Scholar 

  • Benenson, I.: Modeling population dynamics in the city: from a regional to a multi-agent approach. Discret. Dyn. Nat. Soc. 3, 149–170 (1999)

    Article  Google Scholar 

  • Bocco, G., Mendoza, M., Velázquez, A.: Remote sensing and GIS-based regional geomorphological mapping–a tool for land use planning in developing countries. Geomorphology. 39, 211–219 (2001)

    Article  Google Scholar 

  • Campbell, J.C., Radke, J., Gless, J.T., Wirtshafter, R.M.: An application of linear programming and geographic information systems: cropland allocation in Antigua. Environ. Plan. A. 24, 535–549 (1992)

    Article  Google Scholar 

  • Cao, K., Ye, X.Y.: Coarse-grained parallel genetic algorithm applied to a vector based land use allocation optimization problem: the case study of Tongzhou Newtown, Beijing, China. Stoch. Environ. Res. Risk Assess. 27, 1133–1142 (2013)

    Article  Google Scholar 

  • Chakir, R., Gallo, J.L.: Predicting land use allocation in France: a spatial panel data analysis. Ecol. Econ. 92, 114–125 (2013)

    Article  Google Scholar 

  • Cromley, R.G., Hanink, D.M.: Coupling land use allocation models with raster GIS. J. Geogr. Syst. 1, 137–153 (1999)

    Article  Google Scholar 

  • Dai, Z.Y., Li, Y.P.: A multistage irrigation water allocation model for agriculturalland-use planning under uncertainty. Agric. Water Manage. 129, 69–79 (2013)

    Article  Google Scholar 

  • Gong, J.Z., Liu, Y.S., Chen, W.L.: Optimized land use allocation of urban fringe in Guangzhou. J. Geogr. Sci. 22, 179–191 (2012)

    Article  Google Scholar 

  • Guan, D., Gao, W., Watari, K., Fukahori, H.: Land use change of Kitakyushu based on landscape ecology and Markov model. J. Geogr. Sci. 18, 455–468 (2008)

    Article  Google Scholar 

  • Haque, A., Asami, Y.: Optimizing urban land use allocation for planners and real estate developers. Comput. Environ. Urban Syst. 46, 57–69 (2014)

    Article  Google Scholar 

  • Hu, S.G., Cheng, Q.M., Wang, L., Xu, D.Y., Haque, A., Asami, Y.: Optimizing urban land use allocation for planners and real estate developers. Landsc. Urban Plan. 110, 25–35 (2013)

    Article  Google Scholar 

  • Khalid, E.: A GEP-based spatial decision support system for multisite land use allocation. Ecol. Model. 10, 694–702 (2010)

    Google Scholar 

  • Kok, K., Winograd, M.: Modelling land-use change for Central America, with special reference to the impact of hurricane Mitch. Ecol. Model. 149, 53–69 (2002)

    Article  Google Scholar 

  • Li, Y.R., Liu, Y.S., Long, H.L., Cui, W.G.: Community-based rural residential land consolidation and allocation can help to revitalize hollowed villages in traditional agricultural areas of China: evidence from Dancheng County, Henan Province. Land Use Policy 39, 188–198 (2014)

    Article  Google Scholar 

  • Liu, Y., Wang, L., Long, H.: Spatio-temporal analysis of land-use conversion in the eastern coastal China during 1996–2005. J. Geogr. Sci. 18, 274–282 (2008)

    Article  Google Scholar 

  • Liu, X., Li, X., Shi, X., Zhang, X., Chen, Y.: Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. Int. J. Geogr. Inf. Sci. 24, 783–802 (2010)

    Article  Google Scholar 

  • Liu, X.P., Ou, J.P., Li, X., Ai, B.: Combining system dynamics and hybrid particle swarm optimization for land use allocation. Ecol. Model. 257, 11–24 (2014)

    Article  Google Scholar 

  • Lu, S.S., Liu, Y.S., Long, H.L., Guan, X.H.: Agricultural production structure optimization: a case study of major grain producing areas, China. J. Integr. Agric. 12, 184–197 (2013)

    Article  Google Scholar 

  • Lu, S.S., Guan, X.L., Zhou, M., Wang, Y.: Land resources allocation strategies in an urban area involving uncertainty: a case study of Suzhou, in the Yangtze River Delta of China. Environ. Manage. 53, 894–912 (2014)

    Article  Google Scholar 

  • Marull, J., Pino, J., Tello, E., Cordobilla, M.J.: Social metabolism, landscape change and land-use planning in the Barcelona Metropolitan Region. Land Use Policy 27, 497–510 (2010)

    Article  Google Scholar 

  • Messina, V., Bosetti, V.: Uncertainty and option value in land allocation problems. Ann. Oper. Res. 124, 165–181 (2003)

    Article  Google Scholar 

  • Muller, M.R., Middleton, J.: A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landsc. Ecol. 9, 151–157 (1994)

    Google Scholar 

  • Nino-Ruiz, M., Bishop, I., Pettit, C.: Spatial model steering, an exploratory approach to uncertainty awareness in land use allocation. Environ. Model. Softw. 39, 70–80 (2013)

    Article  Google Scholar 

  • Pilehforooshha, P., Karimi, M., Taleai, M.: A GIS-based agricultural land-use allocation model coupling increase and decrease in land demand. Agric. Syst. 130, 116–125 (2014)

    Article  Google Scholar 

  • Ren, F.H.: A training model for GIS application in land resource allocation. ISPRS J. Photogramm. 52, 261–265 (1997)

    Article  Google Scholar 

  • Ren, W., Zhong, Y., Meligrana, J., Anderson, B., Watt, W.E., Chen, J., Leung, H.L.: Urbanization, land use, and water quality in Shanghai 1947–1996. Environ. Int. 29, 649–659 (2003)

    Article  Google Scholar 

  • Rutherford, G.N., Bebi, P., Edwards, P.J., Zimmermann, N.E.: Assessing land-use statistics to model land cover change in a mountainous landscape in the European Alps. Ecol. Model. 212, 460–471 (2008)

    Article  Google Scholar 

  • Sadeghi, S.H.R., Jalili, K., Nikkami, D.: Land use optimization in watershed scale. Land Use Policy 26, 186–193 (2009)

    Article  Google Scholar 

  • Santé, I., Crecente, R.: LUSE, a decision support system for exploration of rural land use allocation: application to the Terra Chá district of Galicia (N W Spain). Agric. Syst. 94, 341–356 (2007)

    Article  Google Scholar 

  • Santé-Riveira, I., Boullón-Magán, M., Crecente-Maseda, R., Miranda-Barrós, D.: Algorithm based on simulated annealing for land-use allocation. Comput. Geosci-UK 34, 259–268 (2008)

    Article  Google Scholar 

  • Shakya, K.M., Leuschner, W.A.: A multiple objective land use planning model for Nepalese hills farms. Agric. Syst. 34, 133–149 (1990)

    Article  Google Scholar 

  • Shalaby, A., Tateishi, R.: Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl. Geogr. 27, 28–41 (2007)

    Article  Google Scholar 

  • Sharawi, H.A.: Optimal land-use allocation in central Sudan. For. Policy Econ. 8, 10–21 (2006)

    Article  Google Scholar 

  • Sieber, S., Zander, P., Verburg, P.H., van Ittersum, M.: Model-based systems to support impact assessment–methods, tools and applications. Ecol. Model. 221, 2133–2135 (2010)

    Article  Google Scholar 

  • Stewart, T.J., Janssen, R.: A multiobjective GIS-based land use planning algorithm. Comput. Environ. Urban Syst. 46, 25–34 (2014)

    Article  Google Scholar 

  • Svoray, T., Bannet, T.: Urban land-use allocation in a Mediterranean ecotone: habitat heterogeneity model incorporated in a GIS using a multi-criteria mechanism. Landsc. Urban Plan. 72, 337–351 (2005)

    Article  Google Scholar 

  • Tenerelli, P., Carver, S.: Multi-criteria, multi-objective and uncertainty analysis for agro-energy spatial modeling. Appl. Geogr. 32, 724–736 (2012)

    Article  Google Scholar 

  • van Vliet, J., Bregt, A.K., Hagen-Zanker, A.: Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecol. Model. 222, 1367–1375 (2011)

    Article  Google Scholar 

  • Verburg, P.H., Schot, P.P., Dijst, M.J., Veldkamp, A.: Land-use change modelling: current practice and research priorities. GeoJournal. 61, 309–324 (2004)

    Article  Google Scholar 

  • Verburg, P.H., Tabeau, A., Hatna, E.: Assessing spatial uncertainties of land allocation using a scenario approach and sensitivity analysis: a study for land use in Europe. J. Environ. Manage. 127, 132–144 (2013)

    Article  Google Scholar 

  • Wang, X.H., Yu, S., Liu, Q., Song, J.X.: Land allocation based on integrated GIS-optimization modeling at a watershed level. Landsc. Urban Plan. 66, 61–74 (2004)

    Article  Google Scholar 

  • Wang, H.R., Gao, Y.Y., Huang, G.H.: Land use allocation based on interval multi-objective linear programming model: a case study Pi country Sichuan province. Chin. Geogr. Sci. 20, 176–183 (2010)

    Article  Google Scholar 

  • Xu, J., Sharma, R., Fang, J., Xu, Y.: Critical linkages between land-use transition and human health in the Himalayan region. Environ. Int. 34, 239–247 (2008)

    Article  Google Scholar 

  • Xu, X., Gao, Q., Liu, Y.H., Wang, J., Zhang, Y.: Coupling a land use model and an ecosystem model for a crop-pasture zone. Ecol. Model. 220, 2503–2511 (2009)

    Article  Google Scholar 

  • Xu, Y., Tang, Q.: Land use optimization at small watershed scale on the Loess Plateau. J. Geogr. Sci. 19, 577–586 (2009)

    Article  Google Scholar 

  • Yu, W., Zang, S., Wu, C., Liu, W., Na, X.: Analyzing and modeling land use land cover change (LUCC) in the Daqing City, China. Appl. Geogr. 31, 600–608 (2011)

    Article  Google Scholar 

  • Zhang, Y., Zhang, H.Q., Ni, D.Y., Song, W.: Agricultural land use optimal allocation systemin developing area: application to Yili watershed, Xinjiang Region. Chin. Geogr. Sci. 22, 232–244 (2012)

    Article  Google Scholar 

  • Zhang, J.J., Fu, M.C., Zhang, Z.Y., Tao, J., Fu, W.: A trade-off approach of optimal land allocation between socio-economic development and ecological stability. Ecol. Model. 272, 175–187 (2014)

    Article  Google Scholar 

  • Zhou, M., Chen, Q., Cai, Y.L.: Optimizing the industrial structure of a watershed in association with economic-environmental consideration: an inexact fuzzy multi-objective programming model. J. Clean. Prod. 42, 116–131 (2013)

    Article  Google Scholar 

  • Zhou, M., Cai, Y.L., Guan, X.L., Tan, S.K., Lu, S.S.: A hybrid inexact optimization model for land-use allocation of China. Chin. Geogr. Sci. 7, 1–12 (2014)

    Google Scholar 

Download references

Acknowledgments

This research was supported by National 985 Project of Non-traditional Security at Huazhong University of Science and Technology, National Natural Science Foundation of China (No. 41401631) and Humanities and Social Science Foundation of Ministry of Education of China (No. 12YJCZH299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shukui Tan.

Appendix: The IFP model

Appendix: The IFP model

According to Zhou et al. (2013, 2014), an interval fuzzy programming (IFP) model can be expressed as follows:

$$\begin{aligned} Max f^{\pm }\;\cong \;C^{\pm }x^{\pm } \end{aligned}$$
(1a)

subject to:

$$\begin{aligned}&\displaystyle C^{\pm }x^{\pm }\;\gtrsim b_{_{opt} }^\pm&\end{aligned}$$
(1b)
$$\begin{aligned}&\displaystyle A_i^\pm x\;\lesssim \;b_{_i}^\pm \quad i = 1, 2, {\ldots }, m.&\end{aligned}$$
(1c)

where \(A^\pm \in \{R^\pm \}^{m\times n}, B^\pm \in \{R^\pm \}^{m\times 1}, C^\pm \in \{R^\pm \}^{1\times n}, X^\pm \in \{R^\pm \}^{n\times 1}\), and \({R^\pm }\) denotes a set of interval numbers; Superscripts ‘\(-\)’ and ‘+’ represent lower and upper bounds of the interval parameters, respectively. symbols ‘\(\cong \)’, ‘\(\gtrsim \)’ and ‘\(\lesssim \)’ represent fuzzy equality and inequality. On the basis of the principle of fuzzy flexible programming (FFP), let \(\lambda ^{\pm }\) value correspond to the membership grade of satisfaction for a fuzzy decision. Specifically, the flexibility in the constraints and fuzziness in the system objective, which are represented by fuzzy sets and denoted as “fuzzy constraints” and a “fuzzy goal”, respectively, are expressed as membership grades \(\lambda ^{\pm }\) corresponding to the degrees of overall satisfaction for the constraints/objective. Thus, model (1) can be converted to

$$\begin{aligned} Max\;\;\lambda ^{\pm } \end{aligned}$$
(2a)

subject to

$$\begin{aligned}&\displaystyle C^{\pm }X^{\pm }\le f_d^- +(1-\lambda ^{\pm })(f_d^+ -f_d^{-})&\end{aligned}$$
(2b)
$$\begin{aligned}&\displaystyle A^{\pm }X^{\pm }\le B^{-}+(1-\lambda ^{\pm })(B^{+}-B^{-})&\end{aligned}$$
(2c)
$$\begin{aligned}&\displaystyle X^{\pm }\ge 0&\end{aligned}$$
(2d)
$$\begin{aligned}&\displaystyle 0\le \lambda ^{\pm }\le 1&\end{aligned}$$
(2e)

where \(x_j^\pm \) denotes interval decision variables and \(x_j^\pm \in X^{\pm }; f_d^+ \) and \(f_d^- \)denote the upper and lower bounds of the objective’s aspiration level as designated by decision makers, respectively; \(\lambda ^{\pm }\) denotes the control decision variable corresponding to the degree (membership grade) to which \(X^{\pm }\) solution fulfils the fuzzy objective or constraints. IFLP model can be transformed into two deterministic sub-models, which corresponding to the upper and lower bounds for the desired objective function value. In detail, the sub-model corresponding to \(\lambda ^{-}\) is first formulated and solved. This is based on the fact that the \(\lambda ^{-}\) corresponds \(f^{-}\) and the system objective is to be minimized. If \(b_i^\pm \ge 0\) and \(f^{\pm }\ge 0\), the sub-model corresponding to \(\lambda ^{-}\) can be formulated as follows:

$$\begin{aligned} \hbox {Max}\;\lambda ^{-} \end{aligned}$$
(3a)

subject to:

$$\begin{aligned}&\displaystyle \sum _{j = 1}^{k_1 } {c_j^+ } x_j^+ +\sum _{j = k_1 + 1}^n {c_j^+ } x_j^- \le f_d^- +(1-\lambda ^{-})(f_d^+ -f_d^- )&\end{aligned}$$
(3b)
$$\begin{aligned}&\displaystyle \sum _{j = 1}^{k_1 } {\left| {a_{ij} } \right| ^{-}} Sign(a_{ij}^- )x_j^+ +\sum _{j = k_1 + 1}^n {\left| {a_{ij} } \right| ^{+}} Sign(a_{ij}^+ )x_j^- \le b_i^- +(1-\lambda ^{-})(b_i^+ -b_i^- ),\quad \forall i&\nonumber \\ \end{aligned}$$
(3c)
$$\begin{aligned}&\displaystyle 0\le \lambda ^{-}\le 1&\end{aligned}$$
(3d)
$$\begin{aligned}&\displaystyle x_j^- \ge 0,\quad j=1,\;2,\ldots ,k_1&\end{aligned}$$
(3e)
$$\begin{aligned}&\displaystyle x_j^+ \ge 0,\quad j=k_1 +1,\;k_1 +2,\ldots ,n&\end{aligned}$$
(3f)

where Sign is a signal function, which is defined as:\(Sign(x^{\pm }) \hbox {=} \left\{ {{\begin{array}{l} {1\quad \hbox {if }x^{\pm }\ge 0} \\ {\hbox {-}1\quad \hbox {if }x^{\pm }\le 0} \\ \end{array} }} \right. \). Let \(x_{j opt}^{+}\; (j = 1, 2,{\ldots }, k_{1})\) and \(x_{j opt}^{-} \; (j=k_{1} + 1, k_{1} + 2,{\ldots }, n)\) be solutions of sub-model (3). Then, the second sub-model corresponding to \(\lambda ^{+}\) can be formulated supported by the solution of sub-model (3):

$$\begin{aligned} \hbox {Max}\;\lambda ^{+} \end{aligned}$$
(4a)

subject to:

$$\begin{aligned}&\displaystyle \sum _{j = 1}^{k_1 } {c_j^- } x_j^- +\sum _{j = k_1 + 1}^n {c_j^- } x_j^+ \le f_d^- +(1-\lambda ^{-})(f_d^+ -f_d^- )\end{aligned}$$
(4b)
$$\begin{aligned}&\displaystyle \quad \sum _{j = 1}^{k_1 } {\left| {a_{ij} } \right| ^{+}} Sign(a_{ij}^+ )x_j^- +\sum _{j = k_1 + 1}^n {\left| {a_{ij} } \right| ^{-}} Sign(a_{ij}^- )x_j^+ \le b_i^- +(1-\lambda ^{-})(b_i^+ -b_i^- ),\quad \forall i\end{aligned}$$
(4c)
$$\begin{aligned}&\displaystyle \quad 0\le \lambda ^{+}\le 1\end{aligned}$$
(4d)
$$\begin{aligned}&\displaystyle \quad x_{j\;opt}^+ \ge x_j^- \ge 0,\quad j=1,\;2,\ldots ,k_1\end{aligned}$$
(4e)
$$\begin{aligned}&\displaystyle \quad x_j^+ \ge x_{j\;opt}^- ,\quad j=k_1 +1,\;k_1 +2,\ldots ,n \end{aligned}$$
(4f)

Let \(x_{j opt}^{-} (j = 1, 2,{\ldots }, k_{1})\) and \(x_{j opt}^+ \; (j=k_{1} + 1, k_{1} + 2,{\ldots }, n)\) be solutions of sub-model (4). Thus, we can obtain the interval solutions as follows:

$$\begin{aligned} \lambda _{opt}^\pm&= [\lambda _{opt}^{-} ,\lambda _{opt}^+]\end{aligned}$$
(5a)
$$\begin{aligned} x_{j\;opt}^\pm&= [x_{j\;opt}^- ,x_{j\;opt}^+ ],\quad \forall j \end{aligned}$$
(5b)

Then, \(f_{opt}^{-}\) and \(f_{opt}^+ \) can be calculated as follows:

$$\begin{aligned} f_{opt}^-&= \sum _{j = 1}^{k_1 } {c_j^- } x_j^- +\sum _{j = k_1 + 1}^n {c_j^- } x_j^+\end{aligned}$$
(6a)
$$\begin{aligned} f_{opt}^+&= \sum _{j = 1}^{k_1 } {c_j^+ } x_j^+ +\sum _{j = k_1 + 1}^n {c_j^+ } x_j^- \end{aligned}$$
(6b)

Thus, we have

$$\begin{aligned} f_{j\;opt}^\pm =[f_{opt}^- ,f_{opt}^+ ],\quad \forall j \end{aligned}$$
(7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Tan, S., Tao, L. et al. An interval fuzzy land-use allocation model (IFLAM) for Beijing in association with environmental and ecological consideration under uncertainty. Qual Quant 49, 2269–2290 (2015). https://doi.org/10.1007/s11135-014-0108-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11135-014-0108-6

Keywords

Navigation