Quality & Quantity

, Volume 49, Issue 4, pp 1609–1620 | Cite as

High-order PLS path model with qualitative external information

  • Enrico CiavolinoEmail author
  • Maurizio Carpita
  • Mariangela Nitti


A common situation in the analysis of latent constructs is the availability of external information about the data which could affect the model parameters’ estimation. In this paper a procedure for isolating these information based on the orthogonal projectors in the frame of second order PLS-PM is presented. An application to a case study in the field of the measurement of the subjective quality of work will show the way of functioning and the results obtained from the proposed procedure.


High-order PLS-PM External information analysis Subjective quality of work 


  1. Carpita, M.: La qualità del lavoro nelle cooperative sociali. Misure e modelli statistici, Milan, Franco Angeli (2009)Google Scholar
  2. Carpita, M., Golia, S.: Measuring the quality of work: the case of the italian social cooperatives. Qual. Quant. 46(6), 1659–1685 (2012)CrossRefGoogle Scholar
  3. Carpita, M., Vezzoli, M.: Statistical evidence of the subjective work quality: the fairness drivers of the job satisfaction. Electron. J. Appl. Stat. Anal. 5(1), 89–107 (2012)Google Scholar
  4. Ciavolino, E.: General distress as second-order latent variable estimated through PLS-PM approach. Electron. J. Appl. Stat. Anal. 5(3), 458–464 (2012)Google Scholar
  5. Ciavolino, E., Al-Nasser, A.D.: Comparing generalised maximum entropy and partial least squares methods for structural equation models. J. Nonparametr. Stat. 21(8), 1017–1036 (2009)CrossRefGoogle Scholar
  6. Ciavolino, E., Nitti, M.: Simulation study for PLS path modelling with high-order construct: A job satisfaction model evidence. In: Advanced Dynamic Modeling of Economic and Social Systems, pp. 185–207. Springer, Berlin (2013)Google Scholar
  7. Depedri, S., Tortia, E., Carpita, M., Euricse, F.: Incentives’ Job Satisfaction and Performance: Empirical Evidence in Italian Social Enterprises. Euricse Working Papers, N.012|10, Trento (2010)Google Scholar
  8. Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H.: Handbook of Partial Least Squares. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)CrossRefGoogle Scholar
  9. Jones, D.A., Martens, M.L.: The mediating role of overall fairness and the moderating role of trust certainty in justice-criteria relationships: The formation and use of fairness heuristics in the workplace. J. Organ. Behav. 30(8), 1025–1051 (2009)CrossRefGoogle Scholar
  10. Linacre, J.: Winsteps Rasch Measurement Computer Program., Beaverton, OR (2012)Google Scholar
  11. Lohmöller, J.B.: Latent Variable Path Modeling with Partial Least Squares. Physica-Verlag, Heidelberg (1989)CrossRefGoogle Scholar
  12. Manisera, M.: A graphical tool to compare groups of subjects on categorical variables. Electron. J. Appl. Stat. Anal. 4(1), 1–22 (2011)Google Scholar
  13. Oberski, D., Satorra, A.: Measurement Error models with uncertainty about the error variance. Struct. Equ. Model. A Multidiscip. J. 20(3), 409–428 (2013)CrossRefGoogle Scholar
  14. Paul, M.: A cross-section analysis of the fairness-of-pay perception of UK employees. J. Socio Econ. 35(2), 243–267 (2006)CrossRefGoogle Scholar
  15. Rajala, R., Westerlund, M.: Antecedents to consumers acceptance of mobile advertisements a hierarchical construct PLS structural equation model. In: Proceedings of the 43rd Hawaii International Conference on System Sciences—2010, pp. 1–10 (2010).Google Scholar
  16. Reinartz, W., Krafft, M., Hoyer, W.D.: The customer relationship management process : its measurement and impact on performance. J. Mark. Res. XLI, 293–305 (2004)CrossRefGoogle Scholar
  17. Takane, Y., Shibayama, T.: Principal component analysis with external information on both subjects and variables. Psychometrika 56(1), 97–120 (1991)CrossRefGoogle Scholar
  18. Tortia, E.C.: Worker well-being and perceived fairness: survey-based findings from Italy. J. Socio Econ. 37(5), 2080–2094 (2008)CrossRefGoogle Scholar
  19. Walumbwa, F.O., Cropanzano, R., Hartnell, C.A.: Organizational justice, voluntary learning behavior, and job performance: a test of the mediating effects of identification and leader-member exchange. J. Organ. Behav. 30(8), 1103–1126 (2009)CrossRefGoogle Scholar
  20. Wold, H.: Path models with latent variables: the NIPALS approach. In: Blalock, (ed.) Quantitative Sociology, pp. 307–357. Seminar Press, New York (1975)CrossRefGoogle Scholar
  21. Yanai, H.: Factor analysis with external criteria: application of analysis of variance and regression analysis technique to factor analysis. Jpn. Psychol. Res. 12(4), 143–153 (1970)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Enrico Ciavolino
    • 1
    Email author
  • Maurizio Carpita
    • 2
  • Mariangela Nitti
    • 1
  1. 1.Department of History, Society and Human StudiesUniversity of Salento LecceItaly
  2. 2.Department of Economics and ManagementUniversity of BresciaBresciaItaly

Personalised recommendations