Quality & Quantity

, Volume 48, Issue 2, pp 681–695 | Cite as

Unemployment hysteresis in Australia: evidence using nonlinear and stationarity tests with breaks



This study is an attempt to test the hysteresis versus the natural rate hypothesis in unemployment rate using time series data of the Australia covering the period 1978: 2–2010:12. For the analysis, we employed nonlinear as well as different linear tests (with incorporation of endogenously determined structural breaks) of unit root. We found that the Australian unemployment rate is nonlinear process, has a partial unit root and trend reverting. Therefore, we provide support for the structuralist hypothesis. This finding provides the importance of accounting for exogenous shocks in the series and gives support to the shifting natural-rate hypothesis of the Australian unemployment rate.


Unemployment rate Hysteresis Threshold autoregressive model Nonlinear unit root Structural breaks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alogoskoufis G.S., Manning A.: On the persistence of unemployment. Econ. Policy 7, 428–469 (1988)Google Scholar
  2. Andrews D.: Tests for parameter instability and structural change with unknown change point. Econometrica 61, 821–856 (1993)CrossRefGoogle Scholar
  3. Blanchard, O., Summers, L.: Hysteresis and the European unemployment problem. In: Fischer, S. (ed.) NBER Macroeconomics Annual, MIT Press, Cambridge, MA (1986)Google Scholar
  4. Blanchard O., Wolfers J.: The role of shocks and institutions in the rise of European unemployment: the aggregate evidence. Econ. J. 110, C1–C33 (2000)CrossRefGoogle Scholar
  5. Brunello G.: Hysteresis and the Japanese unemployment problem: a preliminary investigation. Oxf. Econ. Pap. 42, 483–500 (1990)Google Scholar
  6. Cancelo J.R.: Cyclical asymmetries in unemployment rates: international evidence. Int. Adv. Econ. Res. 13, 334–346 (2007)CrossRefGoogle Scholar
  7. Caner M., Hansen B.E.: Threshold autoregression with a unit root. Econometrica 69, 1555–1596 (2001)CrossRefGoogle Scholar
  8. Caporale G.M., Gil-Alana L.A.: Nonlinearities and fractional integration in the us unemployment rate. Oxf. Bull. Econ. Stat. 69, 521–544 (2007)CrossRefGoogle Scholar
  9. Dickey D.A., Fuller W.A.: Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74, 27–431 (1979)Google Scholar
  10. Friedman M.: The role of monetary policy. Am. Econ. Rev. 58, 1–17 (1968)Google Scholar
  11. Ghosh D., Dutt S.: Nonstationarity and nonlinearity in the us unemployment rate: a re-examination. J. Econ. Educ. 8, 43–53 (2008)Google Scholar
  12. Gray D.: Persistent regional unemployment differentials revisited. Reg. Stud. 38, 167–176 (2004)CrossRefGoogle Scholar
  13. Gustavsson M., P.: Hysteresis and non-linearities in unemployment rates. Appl. Econ. Lett. 13, 545–548 (2006)CrossRefGoogle Scholar
  14. Kapetanios G.: Unit-root testing against the alternative hypothesis of up to m structural breaks. J. Time Ser. Anal. 26, 123–133 (2005)CrossRefGoogle Scholar
  15. Kapetanios G., Shin Y., Snell A.: Testing for a unit root in the nonlinear star framework. J. Econom. 112, 359–379 (2003)CrossRefGoogle Scholar
  16. Kwiatkowski D., Phillips P.C.B., Schmidt P., Shin Y.: Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econom. 54, 159–178 (1992)CrossRefGoogle Scholar
  17. Layard, R., Nickell, S., Jackman, R.: Unemployment, Macroeconomic Performance and the Labour Market. Oxford University Press, Oxford (1991)Google Scholar
  18. Lee J., Strazicich M.C.: Break point estimation and spurious rejections with endogenous unit root tests. Oxf. Bull. Econ. Stat. 63, 535–558 (2001)CrossRefGoogle Scholar
  19. Lee J., Strazicich M.C.: Minimum Lagrange multiplier unit root test with two structural breaks. Rev. Econ. Stat. 85, 1082–1089 (2003)CrossRefGoogle Scholar
  20. Lee, J., Strazicich, M.C.: Minimum l m Unit Root Test with One Structural Break. Department of Economics, Appalachian State University, Boone, NC (2004)Google Scholar
  21. Lumsdaine R.L., Papell D.H.: Multiple trend breaks and the unit-root hypothesis. Rev. Econ. Stat. 79, 212–218 (1997)CrossRefGoogle Scholar
  22. Madsen, J., Mishra, V., Smyth, R.: Are labour force participation rates non-stationary? Evidence from 130 years for G7 countries. Aust. Econ. Pap. 47, 166–189 (2008)Google Scholar
  23. Narayan P.K., Popp S.: A new unit root test with two structural breaks in level and slope at unknown time. J. Appl. Stat. 37, 1425–1438 (2010)CrossRefGoogle Scholar
  24. Newey, W.K., West, K.D.: A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55, 703–708 (1987)Google Scholar
  25. Ng S., Perron P.: Lag length selection and the construction of unit root tests with good size and power. Econometrica 69, 1519–1554 (2001)CrossRefGoogle Scholar
  26. Nunes L.C., Newbold P., Kuan C.M.: Testing for unit roots with breaks: evidence on the great crash and the unit root hypothesis reconsidered. Oxf. Bull. Econ. Stat. 59, 435–448 (1997)CrossRefGoogle Scholar
  27. Oswald, A.: Low real oil prices not a new paradigm. Warwick University, mimeo (1999)Google Scholar
  28. Peel D.A., Speight A.E.H.: The nonlinear time series properties of unemployment rates: some further evidence. Appl. Econ. 30, 287–294 (1998)CrossRefGoogle Scholar
  29. Peel D.A., Speight A.E.H.: Threshold nonlinearities in unemployment rates: further evidence for the UK and G3 economies. Appl. Econ. 32, 705–715 (2000)CrossRefGoogle Scholar
  30. Perron P.: The great crash, the oil price shock and the unit root hypothesis. Econometrica 57, 1361–1401 (1989)CrossRefGoogle Scholar
  31. Phelps E.S.: Phillips curves, expectations of inflation and optimal unemployment over time. Economica 34, 254–281 (1967)CrossRefGoogle Scholar
  32. Phelps E.S.: Money-wage dynamics and labor-market equilibrium. J. Political Econ. 76, 678–711 (1968)CrossRefGoogle Scholar
  33. Phelps E.S.: Behind this structural boom: the role of asset valuations. Am. Econ. Rev. 89, 63–68 (1999)CrossRefGoogle Scholar
  34. Phillips P.C.B., Perron P.: Testing for a unit root in time series regression. Biometrika 75, 335–346 (1988)CrossRefGoogle Scholar
  35. Pissarides, C.: Equilibrium Unemployment Theory. Basil Blackwell, Oxford (1990)Google Scholar
  36. Popp S.: New innovational outlier unit root test with a break at an unknown time. J. Stat. Comput. Simul. 78, 1143–1159 (2008)CrossRefGoogle Scholar
  37. Røed K.: Unemployment hysteresis and the natural rate of vacancies. Empir. Econ. 27, 687–704 (2002)CrossRefGoogle Scholar
  38. Sessions J.G.: Unemployment stigma and multiple labour market equilibria: a social-psychological explanation of hysteresis. Labour 8, 355–375 (1994)CrossRefGoogle Scholar
  39. Tiwari, A.K.: On the dynamics of energy consumption, CO2 emissions and economic growth: evidence from India. Indian Econ. Rev. 47(1), 57–87 (2012a)Google Scholar
  40. Tiwari, A.K.: An error-correction analysis of India-US trade flows. J Econ. Dev. 37(1), 29–51 (2012b)Google Scholar
  41. Ucar N., Omay T.: Testing for unit root in nonlinear heterogeneous panels. Econ. Lett. 104, 5–8 (2009)CrossRefGoogle Scholar
  42. Vogelsang, T., Perron, P.: Additional tests for a unit root allowing for a break in the trend function at an unknown time. Int. Rev. Econ 39(4), 1073–1100 (1998)Google Scholar
  43. Yilanci V.: Are unemployment rates nonstationary or nonlinear? Evidence from 19 OECD countries. Econ. Bull. 3, 1–5 (2008)Google Scholar
  44. Zivot E., Andrews D.W.K.: Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. J. Bus. Econ. Stat. 10, 251–270 (1992)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Faculty of ManagementICFAI University, TripuraKamalghat, SadarIndia

Personalised recommendations