Quality & Quantity

, Volume 48, Issue 1, pp 347–373 | Cite as

The physics of the city: pedestrians dynamics and crowding panic equation in Venezia

  • Elisa Omodei
  • Armando Bazzani
  • Sandro Rambaldi
  • Paolo Michieletto
  • Bruno Giorgini
Article

Abstract

In this paper we present the physics of the city, a new approach in order to investigate the urban dynamics. In particular we focus on the citizens’ mobility observation and modeling. Being in principle the social dynamics not directly observable, our main idea is that observing the human mobility processes we can deduce some features and characteristics of social dynamics. We define the automata gas paradigm and we write a crowding equation able to predict, in a statistical sense, the threshold between a selforganized crowd and a chaotic one, which we interpret as the emergence of a possible panic scenario. We show also some specific results obtained on the Venezia pedestrian network. Firstly, analyzing the network we estimate the Venice complexity, secondly measuring the pedestrian flow on some bridges we find significant statistical correlations, and by the experimental data we design two different bridges flow profiles depending from the pedestrian populations. Furthermore considering a reduced portion of the city, i.e. Punta della Dogana, we build up a theoretical model via a Markov approach, with a stationary state solution. Finally implementing some individual characteristics of pedestrians, we simulate the flows finding a good agreement with the empirical distributions. We underline that these results can be the basis to construct an E-governance mobility system.

Keywords

Physics of the city Pedestrian dynamics Crowding panic equation Venezia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert R., Barabasi A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)CrossRefGoogle Scholar
  2. Badii R., Politi A.: Complexity, Hierarchical Structures and Scaling in Physics. Cambridge Nonlinear Science Series, vol. 6. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  3. Barrat A., Barthélemy M., Vespignani A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  4. Batty M.: Cities and Complexity. MIT Press, Cambridge (2005a)Google Scholar
  5. Batty M.: Agents, cells and cities: new representational models for simulating multi-scale urban dynamics. Environ. Plan. A 37(8), 1373–1394 (2005b)CrossRefGoogle Scholar
  6. Bazzani A. et al.: A chronotopic model of mobility in urban spaces. Physica A 325, 517–530 (2003)CrossRefGoogle Scholar
  7. Bazzani, A., Giorgini, B., Rambaldi, S. (eds.): Physics and the city. Advances in Complex Systems, 10(2), 255–270 (2007a)Google Scholar
  8. Bazzani, A., Giorgini, B., Rambaldi, S., Brambilla, M., Cattelani, L.: Walking between free will and determinism. In: Proceedings of the 2007 Summer Computer Simulation Conference (2007b)Google Scholar
  9. Bazzani, A., Giorgini, B., Zanlungo, F., Rambaldi, S.: Cognitive dynamics in a automata gas. In: Serra, R., Villani, M., Poli, I. (eds.) Artificial Life and Evolutionary Computation: Proceedings of Wivace. World Scientific, Singapore (2008)Google Scholar
  10. Bazzani, A., Giorgini, B., Rambaldi, S.: Traffic and Crowd Dynamics: the physics of the city. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, Part 20. Springer, New York (2009)Google Scholar
  11. Bazzani A., Giorgini B., Rambaldi S.: Modeling urban mobility for e-governance with low energy complexity. J. Green Eng. 1, 1–32 (2010)Google Scholar
  12. Berk R.A.: A gaming approach to crowd behavior. Am. Sociol. Rev. 39(3), 355–373 (1974)CrossRefGoogle Scholar
  13. Blumer H.: Collective Behavior (first publishing 1951). Irvington Publishers, New York (1993)Google Scholar
  14. Bonfiglioli, S.: Che cosa è un cronotopo. Urbanistica Quaderni INU, Roma (1997) (ibidem)Google Scholar
  15. Braudel F.: Memory and the Mediterranean. Vintage Books, New York (2002)Google Scholar
  16. Caldarelli G.: Scale-Free Networks. Oxford University Press, Oxford (2007)CrossRefGoogle Scholar
  17. Canetti E.: Crowds and Power. The Noonday Press (Farrar, Strauss & Giroux), New York (1984)Google Scholar
  18. Cascetta E.: Transportation System Engineering: Theory and Methods. Kluwer, Boston (2001)CrossRefGoogle Scholar
  19. Crucitti P., Latora W., Porta S.: Centrality measures in spatial networks of urban streets. Phys. Rev. E 73, 036125 (2006)CrossRefGoogle Scholar
  20. Domencich T., McFadden D.: Urban Travel Demand: A Behavioral Analysis. North-Holland Publishing Co, Amsterdam (1975)Google Scholar
  21. Eckmann J.P., Ruelle D.: Ergodic theory of chaos and strangers attractors. Rev. Mod. Phys. 57, 617–656 (1985)CrossRefGoogle Scholar
  22. Federici, M.L.: Agent-based modelling and micro-simulation of pedestrian dynamics and crowd phenomena in public environments. Ph.D. Thesis, Università degli Studi di Milano Bicocca, Anno Accademico (2006–2007)Google Scholar
  23. Garnsey, E., McGlade, J. (eds.): Complexity and Co-Evolution, Continuity and Change in Socio-Economic Systems. Edward Elgar Publisher, Cheltenham (2006)Google Scholar
  24. Giorgini, B.: The time of chaos, in Il tempo e la città tra natura e storia. In: Bonfiglioli, S., Mareggi, M. (eds.) Atlante dei progetti sui tempi della città. Urbanistica Quaderni INU, Roma (1997)Google Scholar
  25. Giorgini, B., Turchetti, G.: From Newton–Boltzmann paradigms to complexity: a bridge to biosystems. In: Freguglia, P. (ed.) The Science of Complexity: Chimera or Reality, Milan Research for Industrial and Applied Mathematics. Esculapio, Bologna (2006)Google Scholar
  26. Hayles N.K.: How We Became Posthuman. Virtual Bodies in Cybernetics, Literature, and Information. The University of Chicago Press, Chicago (1999)CrossRefGoogle Scholar
  27. Helbing D.: A fluid-dynamic model for the movement of pedestrians. Complex Syst. 6, 391–415 (1992)Google Scholar
  28. Helbing D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)CrossRefGoogle Scholar
  29. Le Bon, G.: The Crowd: A Study of the Popular Mind (first publishing 1895). Dover, Mineola (2002)Google Scholar
  30. Mamoli, M., Michieletto, P., Bazzani, A., Giorgini, B.: Venice as pedestrian city and tourist magnet. In: Proceedings of the Venice Transport International (2010)Google Scholar
  31. Martinotti G.: Gone with the Wind: physical spaces in the third generation metropolis. Adv. Complex Syst. 10(2), 233–253 (2007)CrossRefGoogle Scholar
  32. Melchiorre, G., Bazzani, A., Giorgini, B., Rambaldi, S.: Walking in Venezia carnival: crowd dynamics and pedestrian trajectories. In: Pezzanio, M., Chiafa, E. (eds.) Space for Public Shows and Trade Fairs. Codice SIAE pbx003, Brescia. www.polibrixia.it (2007)
  33. Nicolis G., Prigogine I.: Exploring Complexity. W. H. Freeman & Co. Ltd, New York (1989)Google Scholar
  34. Nuvolati, G.: Lo sguardo vagabondo. Il flâneur e la città da Baudelaire ai postmoderni, il Mulino, Bologna (2006)Google Scholar
  35. Nuvolati G.: Le Flâneur Dans l’Espace Urbain. Géographie et Culture Dans L’Espace Urbain 70, 7–20 (2009)CrossRefGoogle Scholar
  36. Progetto di Ricerca di Interesse Nazionale (PRIN). (2005–2007). Individui e gruppi in movimento: strumenti sociologici e nuove tecnologie per lo studio della mobilità di eventi turistici e delle trasformazioni urbane, National Coordinator: Prof. Guido Martinotti—Università Milano BicoccaGoogle Scholar
  37. Progetto di Ricerca di Interesse Nazionale (PRIN). (2007–2009). Individui e gruppi in movimento: strumenti sociologici e nuove tecnologie per lo studio della mobilità di eventi turistici e delle trasformazioni urbane, National Coordinator: Prof. Guido Martinotti—Università Milano BicoccaGoogle Scholar
  38. Rizzolatti G., Craighero L.: The Mirror Neuron System. Annu. Rev. Neurosci. 27, 169–192 (2004)CrossRefGoogle Scholar
  39. Scott, A. (ed.): Encyclopedia of Nonlinear Science. Routledge Taylor & Francis Group New York (2005)Google Scholar
  40. Shannon C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)CrossRefGoogle Scholar
  41. Shannon C.E., Weaver W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)Google Scholar
  42. Taylor M.C.: The Moment of Complexity Emerging Network Culture. The University of Chicago Press, Chicago and London (2001)Google Scholar
  43. Turchetti G., Zanlungo F., Giorgini B.: Dynamics and thermodynamics of a gas of automata. Europhys. Lett. 78-5, 58003 (2007)CrossRefGoogle Scholar
  44. Parisi, G.: Complex systems: a physicist’s view point. Stat. Mech. arXiv: cond-mat/0205297 (2002)Google Scholar
  45. Turner J.: Social Identity in Social Identity Theory: Where are We Now. Blackwell, Oxford (1999)Google Scholar
  46. Gelder T.: The dinamica hypothesis in cognitive science. Behav. Brain Sci. 21, 615 (1998)Google Scholar
  47. Von Neumann J.: The General and Logical Theory of Automata. Collected Works, vol. V, pp. 288–328. Pergamon Press, Oxford (1963)Google Scholar
  48. Walmsley G.: Emergence and reduction in dynamical cognitive science. New Ideas Psychol. 28, 274–282 (2010)CrossRefGoogle Scholar
  49. Wiener N.: Cybernetics, or Control and Communication in the Animal and Machine. Wiley, New York (1948)Google Scholar
  50. Yamori K.: Going with the flow: micro–macro dynamics in the macro behavioral patterns of pedestrian crowds. Psychol. Rev. 105(3), 530–557 (1998)CrossRefGoogle Scholar
  51. Yates F.E.: Self-Organizing Systems: The Emergence of Order. Plenum, New York (1997)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Elisa Omodei
    • 1
    • 2
    • 4
  • Armando Bazzani
    • 1
    • 2
  • Sandro Rambaldi
    • 1
    • 2
  • Paolo Michieletto
    • 3
  • Bruno Giorgini
    • 1
    • 2
    • 5
  1. 1.Laboratorio di Fisica della Città, CIG and CIRIUniversità di BolognaBolognaItaly
  2. 2.Dipartimento di Fisica and INFNSezione di BolognaBolognaItaly
  3. 3.IUAV Università di VeneziaVeniceItaly
  4. 4.Laboratoire LaTTice (CNRS, ENS and Paris 3) and Institut des Systèmes Complexes (ISC-PIF)ParisFrance
  5. 5.IMéRAMarseilleFrance

Personalised recommendations