Skip to main content
Log in

The impact of coding time on the estimation of school effects

  • Published:
Quality & Quantity Aims and scope Submit manuscript

Abstract

Multilevel growth curve models are becoming invaluable in educational research because they model changes in student outcomes efficiently. The coding of the time variable in these models plays a crucial role as illustrated in this study for the case of a three-level quadratic growth curve model. This paper shows clearly how the choice of a time coding affects school effects estimates and their interpretation. A new definition for school effects for growth curve models with random intercepts and slopes is proposed. This study recommends that the choice of a time coding should not only be based on the ease of interpretation and model convergence but also on its consequences on the student status and growth parameter estimates. The current application illustrates that in general the school effects for student growth in well-being and language achievement in secondary school, are greater for student growth than for student status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biesanz J.C., Deeb-Sossa N., Aubrecht A.M., Bollen K.A., Curran P.J.: The role of coding time in estimating and interpreting growth curve models. Psychol. Methods 9, 30–52 (2004)

    Article  Google Scholar 

  • Curran P.J., Hussong A.M.: Structural equation modeling of repeated measures data: latent curve analysis. In: Moskowitz, D.S., Hershberger, S.L. (eds.) Modeling Intraindividual Variability with Repeated Measures Data, pp. 59–85. Lawrence Erlbaum, Mahwah (2002)

    Google Scholar 

  • Davis P., Scott A.: The effect of interviewer variance on domain comparisons. Surv. Methodol. 21, 99–106 (1995)

    Google Scholar 

  • De Fraine B., Van Damme J., Onghena P.: A longitudinal analysis of gender differences in academic self-concept and language achievement. A multivariate latent growth curve approach. Contemp. Educ. Psychol. 32, 132–150 (2007)

    Article  Google Scholar 

  • De Fraine B., Van Landeghem G., Van Damme J., Onghena P.: An analysis of well-being in secondary school with multilevel growth curve models and multilevel multivariate models. Qual. Quant. 39, 297–316 (2005)

    Article  Google Scholar 

  • Duncan T.E., Duncan S.C., Strycker L.A.: An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues and Applications. Laurence Erlbaum, Mahwah (2006)

    Google Scholar 

  • Fitzmaurice G.M., Laird N.M., Ware J.H.: Applied Longitudinal Analysis. Wiley, Hoboken (2004)

    Google Scholar 

  • Garst, H.: Longitudinal research using structural equation modeling applied to studies of determinants of psychological well-being and personal initiative in East Germany after the unification. Doctoral dissertation, University of Amsterdam (2000)

  • Goldstein H.: Multilevel Models in Educational and Social Research. Oxford University Press, New York (1995)

    Google Scholar 

  • Hoffman L.: Multilevel models for examining individual differences in within-person variation and covariation over time. Multivar. Behav. Res. 42, 609–629 (2007)

    Article  Google Scholar 

  • Kreft I.G.G., de Leeuw J., Aiken L.S.: The effects of different forms of centering in hierarchical linear models. Multivar. Behav. Res. 30, 1–22 (1995)

    Article  Google Scholar 

  • Kwok O., West S.G., Green S.B.: The impact of misspecifying the within-subject covariance structure in multiwave longitudinal multilevel models: a Monte Carlo study. Multivar. Behav. Res. 42, 557–592 (2007)

    Article  Google Scholar 

  • Laird N., Ware J.: Random-effects models for longitudinal data. Biometrics 38, 963–974 (1982)

    Article  Google Scholar 

  • Lange N., Laird N.: The effect of covariance structure on variance estimation in balance growth-curve models with random parameters. J. Am. Stat. Assoc. 84, 241–247 (1989)

    Article  Google Scholar 

  • May, H., Supovitz, J.A., Perda, D.: A longitudinal study of the impact of America’s choice on student performance in Rochester, New York, 1998–2003. Consortium for Policy Research in Education, University of Pennsylvania, Philadelphia (2004)

  • McArdle J.J.: Dynamic but structural equation modeling of repeated measures data. In: Nesselroade, J.R., Cattell, R.B. (eds.) Handbook of Multivariate Experimental Psychology, 2nd edn, Plenum, New York (1988)

    Google Scholar 

  • Mehta P.D., West S.G.: Putting the individual back into individual growth curves. Psychol. Methods 5, 23–43 (2000)

    Article  Google Scholar 

  • Muthén L.K., Muthén B.O.: Statistical Analysis with Latent Variables: Mplus User’s Guide, 4th edn. Authors, Los Angeles (2006)

    Google Scholar 

  • Rasbash J., Browne W., Goldstein H., Yang M.: A User’s Guide to MLwiN. Institute of Education, London (2000)

    Google Scholar 

  • Raudenbush S.W.: The analysis of longitudinal, multilevel data. Int. J. Educ. Res. 13, 721–740 (1989)

    Article  Google Scholar 

  • Raudenbush S.W. : Statistical models for studying the effects of social context on individual development. In: Gottman, J. (ed.) The Analysis of Change, pp. 165–201. Lawrence Erlbaum, Hillsdale (1995)

    Google Scholar 

  • Raudenbush S.W.: Comparing personal trajectories and drawing causal inferences from longitudinal data. Annu. Rev. Psychol. 50, 501–525 (2001a)

    Article  Google Scholar 

  • Raudenbush S.W.: Towards a coherent framework for comparing trajectories of individual change. In: Collins, L.M., Sayer, A.G. (eds.) New Methods for the Analysis of Change, pp. 35–64. American Psychological Association, Washington, DC (2001b)

    Chapter  Google Scholar 

  • Raudenbush S.W., Bryk A.S.: Hierarchical Linear Models. Applications and Data Analysis Methods, 2nd edn. Sage, London (2002)

    Google Scholar 

  • Rogosa D.R.: Myths and methods: myths about longitudinal research, plus supplemental questions. In: Gottman, J.M. (ed.) The Analysis of Change, pp. 3–65. Lawrence Erlbaum, Mahwah (1995)

    Google Scholar 

  • Rogosa D.R., Willett J.B.: Understanding correlates of change by modeling individual differences in growth. Psychometrika 50, 203–228 (1985)

    Article  Google Scholar 

  • Rogosa D.R., Brandt D., Zimowski M.A.: growth curve approach to the measurement of change. Psychol. Bull. 90, 726–748 (1982)

    Article  Google Scholar 

  • SAS Institute Inc.: SAS User’s Guide: Statistics, 9th edn. SAS Institute Inc., Cary (2003)

  • Siddiqui O., Hedeker D., Flay B.R., Hu F.B.: Intraclass correlation estimates in a school-based smoking prevention study: outcome and mediating variables, by gender and ethnicity. Am. J. Epidemiol. 144, 425–433 (1996)

    Article  Google Scholar 

  • Singer J.D.: Using SAS proc mixed to fit multilevel models, hierarchical models, and individual growth models. J. Educ. Behav. Stat. 24, 323–355 (1998)

    Google Scholar 

  • Singer J.D., Willett J.B.: Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. Oxford University Press, New York (2003)

    Google Scholar 

  • Snijders T.A.B., Bosker R.J.: Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modelling. Sage, London (1999)

    Google Scholar 

  • Spyros K.: Computing power of tests of the variance of treatment effects in designs with two levels of nesting. Multivar. Behav. Res. 43, 327–352 (2008)

    Article  Google Scholar 

  • Stoel R.D., Van den Wittenboer G.: Time dependence of growth parameters in latent growth curve models with time invariant covariates. Methods Psychol. Res. 8, 21–41 (2003)

    Google Scholar 

  • Teddlie C., Reynolds D.: The International Handbook of School Effectiveness Research. Falmer Press, London (2000)

    Google Scholar 

  • Tucker L.R.: Determination of Parameters of a Functional Relation by Factor Analysis. Psychometrika 23, 19–23 (1958)

    Article  Google Scholar 

  • Van Damme J., Opdenakker M.-C., Van Landeghem G., De Fraine B., Pustjens H., Vande gaer E.: Educational Effectiveness: An Introduction to International and Flemish Research on Schools, Teachers, and Classes. Acco, Leuven (2006)

    Google Scholar 

  • Verbeke G., Molenberghs G.: Linear Mixed Models for Longitudinal Data. Springer Series in Statistics. Springer, New York (2000)

    Google Scholar 

  • Wilkins J.L.M., Ma X.: Predicting student growth in mathematical content knowledge. J. Educ. Res. 95, 288–298 (2002)

    Article  Google Scholar 

  • Wilkins J.L.M., Ma X.: Modeling change in student attitude toward and beliefs about mathematics. J. Educ. Res. 97, 52–63 (2003)

    Article  Google Scholar 

  • Willett J.B.: Measuring change: what individual growth modeling buys you. In: Amsel, E., Renninger, K.A. (eds.) Change and Development: Issues of Theory, Method, and Application, pp. 213–243. Lawrence Erlbaum, Mahwah (1997)

    Google Scholar 

  • Willett J.B., Sayer A.G.: Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychol. Bull. 116, 363–381 (1994)

    Article  Google Scholar 

  • Wishart J.: Growth rate determination in nutrition studies with bacon pig and their analysis. Biometrika 30, 16–28 (1938)

    Google Scholar 

  • Yang M., Goldstein H., Heath A.: Multilevel models for repeated binary outcomes: attitudes and voting over the electoral cycle. J. R. Stat. Soc. A 163, 49–62 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nkafu Dickson Anumendem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anumendem, N.D., De Fraine, B., Onghena, P. et al. The impact of coding time on the estimation of school effects. Qual Quant 47, 1021–1040 (2013). https://doi.org/10.1007/s11135-011-9581-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11135-011-9581-3

Keywords

Navigation