A drunk and her dog: a spurious relation? Cointegration tests as instruments to detect spurious correlations between integrated time series

Abstract

A significant correlation between integrated time series does not necessarily imply a meaningful relation. The relation can also be meaningless, i.e. spurious. Cointegration is sometimes illustrated by the metaphor of ‘a drunk and her dog’. The relation between integrated processes is meaningful, if they are cointegrated. To prevent spurious correlations, integrated series are usually transformed. This implies a loss of information. In case of cointegration, these transformations are no longer necessary. Moreover, it can be shown that cointegration tests are instruments to detect spurious correlations between integrated time series. This paper compares the Dickey–Fuller and the Johansen cointegration test. By means of Monte Carlo simulations, we found that these cointegration tests are a much more accurate alternative for the identification of spurious relations compared to the rather imprecise method of utilizing the R 2-and DW-statistics recommended by some authors. Furthermore, we demonstrate that cointegration techniques are precise methods of distinguishing between spurious and meaningful relations even if the dependency between the processes is very low. Using these tests, the researcher is not in danger of either neglecting a small but meaningful relation or regarding a relation as meaningful which is actually spurious.

This is a preview of subscription content, access via your institution.

References

  1. Banerjee, A., Dolado, J.J., Galbraith, J.W., Hendry, D.F.: Co-integration, Error-Correction, and the Econometric Analysis of Non-stationary Data. Oxford University Press, Oxford (1993)

    Book  Google Scholar 

  2. Ben-Zeev, T., Star, J.R.: Spurious correlations in mathematical thinking. Cogn. Instruct. 19, 253–275 (2001)

    Article  Google Scholar 

  3. Box, G.E.P., Jenkins, G.M.: Time-Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1976)

    Google Scholar 

  4. Bremmer, D., Kesselring, R.: Divorce and female labor force participation: evidence from time-series data and cointegration. Atl. Econ. J. 32, 175–190 (2004)

    Article  Google Scholar 

  5. Brosig, B., Brähler, E.: Skin-mind-immune system: a vector-time series model. Z. Klin. Psychol. Psychiatr. Psychother. 49, 279–296 (2001)

    Google Scholar 

  6. Carey, R.J., DePalma, G., Damianopoulos, E.: Response to novelty as a predictor of cocaine sensitization and conditioning in rats: a correlational analysis. Psychopharmacology 168, 245–252 (2003)

    Article  Google Scholar 

  7. Darrat, A.F., Al-Yousif, Y.K.: On the long-run relationship between population and economic growth: some time series evidence for developing countries. East. Econ. J. 25, 301–306 (1999)

    Google Scholar 

  8. De Jong, R.M.: Logarithmic spurious regressions. Econ. Lett. 81, 13–21 (2003)

    Article  Google Scholar 

  9. Delignières, D., Fortes, M., Ninot, G.: The fractal dynamics of self-esteem and physical self. Nonlinear Dynamics Psychol. Life Sci. 8, 479–510 (2004)

    Google Scholar 

  10. Dickey, D.A.: Estimation and testing of nonstationary time series. Unpublished Ph.D. Thesis, Iowa State University, Ames (1976)

  11. Dickey, D.A., Fuller, W.A.: Distribution of estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74, 427–431 (1979)

    Article  Google Scholar 

  12. Dickey, D.A., Fuller, W.A.: Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49, 1057–1072 (1981)

    Article  Google Scholar 

  13. Dickey, D.A., Hasza, D.P., Fuller, W.A.: Testing for unit roots in seasonal time series. J. Am. Stat. Assoc. 79, 355–367 (1984)

    Article  Google Scholar 

  14. Engle, R.F., Granger, C.W.J.: Co-integration and error correction: representation, estimation and testing. Econometrica 55, 251–276 (1987)

    Article  Google Scholar 

  15. Engle, R.F., Granger, C.W.J. (eds.): Long-Run Economic Relationships. Readings in Cointegration. Oxford University Press, New York (1991)

    Google Scholar 

  16. Fahrenberg, J., Myrtek, M., Pawlik, K., Perrez, M.: Ambulatory assessment—capturing behavior in daily life. A behavioral science approach to psychology. Psychol. Rundsch. 58, 12–24 (2007)

    Article  Google Scholar 

  17. Farrell, S., Wagenmakers, E.-J., Ratcliff, R.: 1/f noise in human cognition: is it ubiquitous, and what does it mean?. Psychon. Bull. Rev. 13, 737–741 (2006)

    Google Scholar 

  18. Fiedler, K., Walther, E., Freytag, P., Stryczek, E.: Playing mating games in foreign cultures: a conceptual framework and an experimental paradigm for inductive trivariate inference. J. Exp. Soc. Psychol. 38, 14–30 (2002)

    Article  Google Scholar 

  19. Fortes, M., Ninot, G., Delignières, D.: The dynamics of self-esteem and physical self: between preservation and adaptation. Qual. Quant. 38, 735–751 (2004)

    Article  Google Scholar 

  20. Gilden, D.L.: Fluctuations in the time required for elementary decisions. Psychol. Sci. 8, 296–301 (1997)

    Article  Google Scholar 

  21. Gilden, D.L.: Cognitive emissions of 1/f noises. Psychol. Rev. 108, 33–56 (2001)

    Article  Google Scholar 

  22. Gilden, D.L., Thornton, T., Mallon, M.W.: 1/f noise in human cognition. Science 267, 1837–1839 (1995)

    Article  Google Scholar 

  23. Glass, G.V., Willson, V.L., Gottman, J.M.: Design and Analysis of Time-Series Experiments. Colorado Associated University Press, Boulder (1975)

    Google Scholar 

  24. Gottman, J.M.: Time-Series Analysis. A Comprehensive Introduction for Social Scientists. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  25. Gottschalk, A., Bauer, M.S., Whybrow, P.C.: Evidence of chaotic mood variation in bipolar disorder. Arch. Gen. Psychiatry 52, 947–959 (1995)

    Google Scholar 

  26. Granger, C.W.J.: Some properties of time series data and their use in econometric model specification. J.~Econom. 16, 121–130 (1981)

    Article  Google Scholar 

  27. Granger, C.W.J.: Developments in the study of cointegrated economic variables. Oxf. Bull. Econ. Stat. 48, 213–228 (1986)

    Google Scholar 

  28. Granger, C.W.J.: Causality, cointegration and control. J. Econ. Dyn. Control 12, 551–559 (1988)

    Article  Google Scholar 

  29. Granger, C.W.J., Lee, T.W.: Multicointegration. In: Fomby, Th.B., Rhodes, G.F.(eds) Co-integration, Spurious Regressions, and Unit-Roots: Advances in Econometrics, vol. 8, pp. 71–84. JAI Press, Greenwich (1990)

    Google Scholar 

  30. Granger, C.W.J., Newbold, P.: Spurious regression in econometrics. J. Econom. 2, 111–120 (1974)

    Article  Google Scholar 

  31. Haig, B.D.: What is a spurious correlation?. Underst. Stat. 2, 125–132 (2003)

    Article  Google Scholar 

  32. Haldrup, N.: The asymptotics of single-equation cointegration regressions with I(1) and I(2) variables. J.~Econom. 63, 153–181 (1994)

    Article  Google Scholar 

  33. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)

    Google Scholar 

  34. Harré, R., Madden, E.H.: Causal Powers. Basil Blackwell, Oxford (1975)

    Google Scholar 

  35. Harris, R., Sollis, R.: Applied Time Series Modelling and Forecasting. Wiley, Chichester (2003)

    Google Scholar 

  36. Hendry, D.F.: Econometric modelling with cointegrated variables: an overview. Oxf. Bull. Econ. Stat. 48, 201–212 (1986)

    Google Scholar 

  37. Hitiris, T.: Health care expenditure and integration in the countries of the European Union. Appl. Econ. Lett. 29, 1–6 (1997)

    Google Scholar 

  38. Johansen, S.: Statistical analysis of cointegration vectors. J. Econ. Dyn. Control 12, 231–254 (1988)

    Article  Google Scholar 

  39. Johansen, S.: Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica 59, 1551–1580 (1991)

    Article  Google Scholar 

  40. Johansen, S.: Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press, New York (1995)

    Book  Google Scholar 

  41. Johansen, S., Juselius, K.: Maximum likelihood estimation and inference on cointegration—with applications to the demand for money. Oxf. Bull. Econ. Stat. 52, 169–210 (1990)

    Google Scholar 

  42. Kendall, M.G., Buckland, W.R.: A Dictionary of Statistical Terms. Longman, London (1982)

    Google Scholar 

  43. Kumar, T.K.: Cointegration and error correction models: a historical and methodological perspective. J. Quant. Econ. 11, 143–154 (1995)

    Google Scholar 

  44. Lasswell, H.D.: Changes in an experimental subject during a short series of psychoanalytical interviews. Imago 23, 375–380 (1937)

    Google Scholar 

  45. Lin, Z., Brannigan, A.: Advances in the analysis of non-stationary time series: an illustration of cointegration and error correction methods in research on crime and immigration. Qual. Quant.: Int. J. Methodol. 37, 151–168 (2003)

    Article  Google Scholar 

  46. Luiz, J.-M.: Temporal association, the dynamics of crime, and their economic determinants: a time series econometric model of South Africa. Soc. Indic. Res. 53, 33–61 (2001)

    Article  Google Scholar 

  47. Lütkepohl, H.: Introduction to Multiple Time Series Analysis. Springer, New York (1991)

    Google Scholar 

  48. Maddala, G., Kim, I.-M.: Unit Roots, Cointegration and Structural Change. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  49. Marmol, F., Velasco, C.: Consistent testing of cointegrating relationships. Econometrica 72, 1809–1844 (2004)

    Article  Google Scholar 

  50. McNown, R.: A cointegration model of age-specific fertility and female labor supply in the United States. South. Econ. J. 70, 344–358 (2003)

    Article  Google Scholar 

  51. Meiser, Th.: Contingency learning and biased group impressions. In: Fiedler, K., Juslin, P.(eds) Information Sampling and Adaptive Cognition, pp. 183–209. Cambridge University Press, New York (2006)

    Google Scholar 

  52. Meiser, Th., Hewstone, M.: Illusory and spurious correlations: distinct phenomena or joint outcomes of exemplar-based category learning?. Eur. J. Soc. Psychol. 36, 315–336 (2006)

    Article  Google Scholar 

  53. Murray, M.P.: A drunk and her dog: an illustration of cointegration and error correction. Am. Stat. 48, 37–39 (1994)

    Article  Google Scholar 

  54. Nelson, C.R., Kang, H.: Pitfalls in the use of time as an explanatory variable in regression. J. Bus. Econ. Stat. 2, 73–82 (1984)

    Article  Google Scholar 

  55. Ninot, G., Fortes, M., Delignières, D.: A psychometric tool for the assessment of the dynamics of the physical self. Eur. Rev. Appl. Psychol. 51, 205–216 (2001)

    Google Scholar 

  56. Ninot, G., Fortes, M., Delignières, D.: The dynamics of self-esteem in adults over a six-month period: an exploratory study. J. Psychol. 139, 315–330 (2005)

    Google Scholar 

  57. Pearson, K.: Mathematical contributions to the theory of evolution: on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 60, 489–498 (1897)

    Google Scholar 

  58. Peatman, J.G.: Hazards and fallacies of statistical method in psychological measurement. Psychol. Rec. 22, 365–390 (1937)

    Google Scholar 

  59. Peterson, B.S., Leckman, J.F.: The temporal dynamics of the tics in Gilles de la Tourette syndrome. Biol. Psychiatry 44, 1337–1348 (1998)

    Article  Google Scholar 

  60. Phillips, P.C.B.: Understanding spurious regression in econometrics. J. Econom. 33, 311–340 (1986)

    Article  Google Scholar 

  61. Phillips, P.C.B.: The ET interview: Professor Clive Granger. Econom. Theory 13, 253–303 (1997)

    Article  Google Scholar 

  62. Prather, J.E.: Spurious correlation. In: Encyclopedia of Statistical Science, vol. 8, pp. 613-614. Wiley, New York (1988)

  63. Quertemont, E., Brabant, C., Tirelli, E.: Response to novelty as a predictor for drug effects: the pitfalls of some correlational studies. Psychopharmacology 173, 221–224 (2004)

    Article  Google Scholar 

  64. Rinne, H., Specht, K.: Zeitreihen—Statistische Modellierung, Schätzung und Prognose. Vahlen, München (2002)

    Google Scholar 

  65. Roberts, J.: Spurious regression problems in the determinants of health care expenditure: a comment on Hitiris (1997). Appl. Econ. Lett. 7, 279–283 (2000)

    Article  Google Scholar 

  66. SAS/ETS, Software: Changes and Enhancements, Release 8.2. SAS Institute Inc, Cary (2001)

    Google Scholar 

  67. Simon, H.: Spurious correlation: a causal interpretation. In: Blalock, H.M.(eds) Causal Models in the Social Sciences, pp. 7–21. Aldine, New York (1985)

    Google Scholar 

  68. Stier, W.: Methoden der Zeitreihenanalyse. Springer, Berlin (2001)

    Google Scholar 

  69. Stroe-Kunold, E., Werner, J.: Are psychological processes cointegrated? Present role und future perspectives of cointegration methodology in psychological research Psychool. Rundsch 58, 225–237 (2007)

    Article  Google Scholar 

  70. Stroe-Kunold, E., Werner, J.: Modeling Human Dynamics by Means of Cointegration Methodology (in press)

  71. Van Orden, G.C., Holden, J.G., Turvey, M.T.: Self-organization of cognitive performance. J. Exp. Psychol. Gen. 132, 331–350 (2003)

    Article  Google Scholar 

  72. Velicer, W.F., Fava, J.L.: Time series analysis. In: Schinka, J., Velicer, W.F.(eds) Research Methods in Psychology—Handbook of Psychology, vol. 2, pp. 581–606. Wiley, New York (2003)

    Google Scholar 

  73. Werner, J.: Lineare Statistik—Allgemeines Lineares Modell. Weinheim, BELTZ (1997)

    Google Scholar 

  74. Werner, J. (ed.): Zeitreihenanalysen mit Beispielen aus der Psychologie. Logos, Berlin (2005)

    Google Scholar 

  75. Wherry, R.: A new shrinkage formula for predicting the shrinkage of the coefficient of multiple correlation. Ann. Math. Stat. 2, 440–457 (1931)

    Article  Google Scholar 

  76. Witt, R., Witte, A.: Crime, prison, and female labor supply. J. Quant. Crimonol. 16, 69–85 (2000)

    Article  Google Scholar 

  77. Yule, G.U.: Why do we sometimes get nonsense-correlations between time-series? J. R. Stat. Soc. 89, 1–64 (1926)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joachim Werner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stroe-Kunold, E., Werner, J. A drunk and her dog: a spurious relation? Cointegration tests as instruments to detect spurious correlations between integrated time series. Qual Quant 43, 913–940 (2009). https://doi.org/10.1007/s11135-008-9168-9

Download citation

Keywords

  • Spurious correlation
  • Spurious regression
  • Cointegration
  • Multivariate time series analysis
  • Psychological process research
  • Longitudinal analysis
  • Stationarity
  • Monte Carlo experiments