Skip to main content

A drunk and her dog: a spurious relation? Cointegration tests as instruments to detect spurious correlations between integrated time series

Abstract

A significant correlation between integrated time series does not necessarily imply a meaningful relation. The relation can also be meaningless, i.e. spurious. Cointegration is sometimes illustrated by the metaphor of ‘a drunk and her dog’. The relation between integrated processes is meaningful, if they are cointegrated. To prevent spurious correlations, integrated series are usually transformed. This implies a loss of information. In case of cointegration, these transformations are no longer necessary. Moreover, it can be shown that cointegration tests are instruments to detect spurious correlations between integrated time series. This paper compares the Dickey–Fuller and the Johansen cointegration test. By means of Monte Carlo simulations, we found that these cointegration tests are a much more accurate alternative for the identification of spurious relations compared to the rather imprecise method of utilizing the R 2-and DW-statistics recommended by some authors. Furthermore, we demonstrate that cointegration techniques are precise methods of distinguishing between spurious and meaningful relations even if the dependency between the processes is very low. Using these tests, the researcher is not in danger of either neglecting a small but meaningful relation or regarding a relation as meaningful which is actually spurious.

This is a preview of subscription content, access via your institution.

References

  • Banerjee, A., Dolado, J.J., Galbraith, J.W., Hendry, D.F.: Co-integration, Error-Correction, and the Econometric Analysis of Non-stationary Data. Oxford University Press, Oxford (1993)

    Book  Google Scholar 

  • Ben-Zeev, T., Star, J.R.: Spurious correlations in mathematical thinking. Cogn. Instruct. 19, 253–275 (2001)

    Article  Google Scholar 

  • Box, G.E.P., Jenkins, G.M.: Time-Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1976)

    Google Scholar 

  • Bremmer, D., Kesselring, R.: Divorce and female labor force participation: evidence from time-series data and cointegration. Atl. Econ. J. 32, 175–190 (2004)

    Article  Google Scholar 

  • Brosig, B., Brähler, E.: Skin-mind-immune system: a vector-time series model. Z. Klin. Psychol. Psychiatr. Psychother. 49, 279–296 (2001)

    Google Scholar 

  • Carey, R.J., DePalma, G., Damianopoulos, E.: Response to novelty as a predictor of cocaine sensitization and conditioning in rats: a correlational analysis. Psychopharmacology 168, 245–252 (2003)

    Article  Google Scholar 

  • Darrat, A.F., Al-Yousif, Y.K.: On the long-run relationship between population and economic growth: some time series evidence for developing countries. East. Econ. J. 25, 301–306 (1999)

    Google Scholar 

  • De Jong, R.M.: Logarithmic spurious regressions. Econ. Lett. 81, 13–21 (2003)

    Article  Google Scholar 

  • Delignières, D., Fortes, M., Ninot, G.: The fractal dynamics of self-esteem and physical self. Nonlinear Dynamics Psychol. Life Sci. 8, 479–510 (2004)

    Google Scholar 

  • Dickey, D.A.: Estimation and testing of nonstationary time series. Unpublished Ph.D. Thesis, Iowa State University, Ames (1976)

  • Dickey, D.A., Fuller, W.A.: Distribution of estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74, 427–431 (1979)

    Article  Google Scholar 

  • Dickey, D.A., Fuller, W.A.: Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49, 1057–1072 (1981)

    Article  Google Scholar 

  • Dickey, D.A., Hasza, D.P., Fuller, W.A.: Testing for unit roots in seasonal time series. J. Am. Stat. Assoc. 79, 355–367 (1984)

    Article  Google Scholar 

  • Engle, R.F., Granger, C.W.J.: Co-integration and error correction: representation, estimation and testing. Econometrica 55, 251–276 (1987)

    Article  Google Scholar 

  • Engle, R.F., Granger, C.W.J. (eds.): Long-Run Economic Relationships. Readings in Cointegration. Oxford University Press, New York (1991)

    Google Scholar 

  • Fahrenberg, J., Myrtek, M., Pawlik, K., Perrez, M.: Ambulatory assessment—capturing behavior in daily life. A behavioral science approach to psychology. Psychol. Rundsch. 58, 12–24 (2007)

    Article  Google Scholar 

  • Farrell, S., Wagenmakers, E.-J., Ratcliff, R.: 1/f noise in human cognition: is it ubiquitous, and what does it mean?. Psychon. Bull. Rev. 13, 737–741 (2006)

    Google Scholar 

  • Fiedler, K., Walther, E., Freytag, P., Stryczek, E.: Playing mating games in foreign cultures: a conceptual framework and an experimental paradigm for inductive trivariate inference. J. Exp. Soc. Psychol. 38, 14–30 (2002)

    Article  Google Scholar 

  • Fortes, M., Ninot, G., Delignières, D.: The dynamics of self-esteem and physical self: between preservation and adaptation. Qual. Quant. 38, 735–751 (2004)

    Article  Google Scholar 

  • Gilden, D.L.: Fluctuations in the time required for elementary decisions. Psychol. Sci. 8, 296–301 (1997)

    Article  Google Scholar 

  • Gilden, D.L.: Cognitive emissions of 1/f noises. Psychol. Rev. 108, 33–56 (2001)

    Article  Google Scholar 

  • Gilden, D.L., Thornton, T., Mallon, M.W.: 1/f noise in human cognition. Science 267, 1837–1839 (1995)

    Article  Google Scholar 

  • Glass, G.V., Willson, V.L., Gottman, J.M.: Design and Analysis of Time-Series Experiments. Colorado Associated University Press, Boulder (1975)

    Google Scholar 

  • Gottman, J.M.: Time-Series Analysis. A Comprehensive Introduction for Social Scientists. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  • Gottschalk, A., Bauer, M.S., Whybrow, P.C.: Evidence of chaotic mood variation in bipolar disorder. Arch. Gen. Psychiatry 52, 947–959 (1995)

    Google Scholar 

  • Granger, C.W.J.: Some properties of time series data and their use in econometric model specification. J.~Econom. 16, 121–130 (1981)

    Article  Google Scholar 

  • Granger, C.W.J.: Developments in the study of cointegrated economic variables. Oxf. Bull. Econ. Stat. 48, 213–228 (1986)

    Google Scholar 

  • Granger, C.W.J.: Causality, cointegration and control. J. Econ. Dyn. Control 12, 551–559 (1988)

    Article  Google Scholar 

  • Granger, C.W.J., Lee, T.W.: Multicointegration. In: Fomby, Th.B., Rhodes, G.F.(eds) Co-integration, Spurious Regressions, and Unit-Roots: Advances in Econometrics, vol. 8, pp. 71–84. JAI Press, Greenwich (1990)

    Google Scholar 

  • Granger, C.W.J., Newbold, P.: Spurious regression in econometrics. J. Econom. 2, 111–120 (1974)

    Article  Google Scholar 

  • Haig, B.D.: What is a spurious correlation?. Underst. Stat. 2, 125–132 (2003)

    Article  Google Scholar 

  • Haldrup, N.: The asymptotics of single-equation cointegration regressions with I(1) and I(2) variables. J.~Econom. 63, 153–181 (1994)

    Article  Google Scholar 

  • Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)

    Google Scholar 

  • Harré, R., Madden, E.H.: Causal Powers. Basil Blackwell, Oxford (1975)

    Google Scholar 

  • Harris, R., Sollis, R.: Applied Time Series Modelling and Forecasting. Wiley, Chichester (2003)

    Google Scholar 

  • Hendry, D.F.: Econometric modelling with cointegrated variables: an overview. Oxf. Bull. Econ. Stat. 48, 201–212 (1986)

    Google Scholar 

  • Hitiris, T.: Health care expenditure and integration in the countries of the European Union. Appl. Econ. Lett. 29, 1–6 (1997)

    Google Scholar 

  • Johansen, S.: Statistical analysis of cointegration vectors. J. Econ. Dyn. Control 12, 231–254 (1988)

    Article  Google Scholar 

  • Johansen, S.: Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica 59, 1551–1580 (1991)

    Article  Google Scholar 

  • Johansen, S.: Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press, New York (1995)

    Book  Google Scholar 

  • Johansen, S., Juselius, K.: Maximum likelihood estimation and inference on cointegration—with applications to the demand for money. Oxf. Bull. Econ. Stat. 52, 169–210 (1990)

    Google Scholar 

  • Kendall, M.G., Buckland, W.R.: A Dictionary of Statistical Terms. Longman, London (1982)

    Google Scholar 

  • Kumar, T.K.: Cointegration and error correction models: a historical and methodological perspective. J. Quant. Econ. 11, 143–154 (1995)

    Google Scholar 

  • Lasswell, H.D.: Changes in an experimental subject during a short series of psychoanalytical interviews. Imago 23, 375–380 (1937)

    Google Scholar 

  • Lin, Z., Brannigan, A.: Advances in the analysis of non-stationary time series: an illustration of cointegration and error correction methods in research on crime and immigration. Qual. Quant.: Int. J. Methodol. 37, 151–168 (2003)

    Article  Google Scholar 

  • Luiz, J.-M.: Temporal association, the dynamics of crime, and their economic determinants: a time series econometric model of South Africa. Soc. Indic. Res. 53, 33–61 (2001)

    Article  Google Scholar 

  • Lütkepohl, H.: Introduction to Multiple Time Series Analysis. Springer, New York (1991)

    Google Scholar 

  • Maddala, G., Kim, I.-M.: Unit Roots, Cointegration and Structural Change. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  • Marmol, F., Velasco, C.: Consistent testing of cointegrating relationships. Econometrica 72, 1809–1844 (2004)

    Article  Google Scholar 

  • McNown, R.: A cointegration model of age-specific fertility and female labor supply in the United States. South. Econ. J. 70, 344–358 (2003)

    Article  Google Scholar 

  • Meiser, Th.: Contingency learning and biased group impressions. In: Fiedler, K., Juslin, P.(eds) Information Sampling and Adaptive Cognition, pp. 183–209. Cambridge University Press, New York (2006)

    Google Scholar 

  • Meiser, Th., Hewstone, M.: Illusory and spurious correlations: distinct phenomena or joint outcomes of exemplar-based category learning?. Eur. J. Soc. Psychol. 36, 315–336 (2006)

    Article  Google Scholar 

  • Murray, M.P.: A drunk and her dog: an illustration of cointegration and error correction. Am. Stat. 48, 37–39 (1994)

    Article  Google Scholar 

  • Nelson, C.R., Kang, H.: Pitfalls in the use of time as an explanatory variable in regression. J. Bus. Econ. Stat. 2, 73–82 (1984)

    Article  Google Scholar 

  • Ninot, G., Fortes, M., Delignières, D.: A psychometric tool for the assessment of the dynamics of the physical self. Eur. Rev. Appl. Psychol. 51, 205–216 (2001)

    Google Scholar 

  • Ninot, G., Fortes, M., Delignières, D.: The dynamics of self-esteem in adults over a six-month period: an exploratory study. J. Psychol. 139, 315–330 (2005)

    Google Scholar 

  • Pearson, K.: Mathematical contributions to the theory of evolution: on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 60, 489–498 (1897)

    Google Scholar 

  • Peatman, J.G.: Hazards and fallacies of statistical method in psychological measurement. Psychol. Rec. 22, 365–390 (1937)

    Google Scholar 

  • Peterson, B.S., Leckman, J.F.: The temporal dynamics of the tics in Gilles de la Tourette syndrome. Biol. Psychiatry 44, 1337–1348 (1998)

    Article  Google Scholar 

  • Phillips, P.C.B.: Understanding spurious regression in econometrics. J. Econom. 33, 311–340 (1986)

    Article  Google Scholar 

  • Phillips, P.C.B.: The ET interview: Professor Clive Granger. Econom. Theory 13, 253–303 (1997)

    Article  Google Scholar 

  • Prather, J.E.: Spurious correlation. In: Encyclopedia of Statistical Science, vol. 8, pp. 613-614. Wiley, New York (1988)

  • Quertemont, E., Brabant, C., Tirelli, E.: Response to novelty as a predictor for drug effects: the pitfalls of some correlational studies. Psychopharmacology 173, 221–224 (2004)

    Article  Google Scholar 

  • Rinne, H., Specht, K.: Zeitreihen—Statistische Modellierung, Schätzung und Prognose. Vahlen, München (2002)

    Google Scholar 

  • Roberts, J.: Spurious regression problems in the determinants of health care expenditure: a comment on Hitiris (1997). Appl. Econ. Lett. 7, 279–283 (2000)

    Article  Google Scholar 

  • SAS/ETS, Software: Changes and Enhancements, Release 8.2. SAS Institute Inc, Cary (2001)

    Google Scholar 

  • Simon, H.: Spurious correlation: a causal interpretation. In: Blalock, H.M.(eds) Causal Models in the Social Sciences, pp. 7–21. Aldine, New York (1985)

    Google Scholar 

  • Stier, W.: Methoden der Zeitreihenanalyse. Springer, Berlin (2001)

    Google Scholar 

  • Stroe-Kunold, E., Werner, J.: Are psychological processes cointegrated? Present role und future perspectives of cointegration methodology in psychological research Psychool. Rundsch 58, 225–237 (2007)

    Article  Google Scholar 

  • Stroe-Kunold, E., Werner, J.: Modeling Human Dynamics by Means of Cointegration Methodology (in press)

  • Van Orden, G.C., Holden, J.G., Turvey, M.T.: Self-organization of cognitive performance. J. Exp. Psychol. Gen. 132, 331–350 (2003)

    Article  Google Scholar 

  • Velicer, W.F., Fava, J.L.: Time series analysis. In: Schinka, J., Velicer, W.F.(eds) Research Methods in Psychology—Handbook of Psychology, vol. 2, pp. 581–606. Wiley, New York (2003)

    Google Scholar 

  • Werner, J.: Lineare Statistik—Allgemeines Lineares Modell. Weinheim, BELTZ (1997)

    Google Scholar 

  • Werner, J. (ed.): Zeitreihenanalysen mit Beispielen aus der Psychologie. Logos, Berlin (2005)

    Google Scholar 

  • Wherry, R.: A new shrinkage formula for predicting the shrinkage of the coefficient of multiple correlation. Ann. Math. Stat. 2, 440–457 (1931)

    Article  Google Scholar 

  • Witt, R., Witte, A.: Crime, prison, and female labor supply. J. Quant. Crimonol. 16, 69–85 (2000)

    Article  Google Scholar 

  • Yule, G.U.: Why do we sometimes get nonsense-correlations between time-series? J. R. Stat. Soc. 89, 1–64 (1926)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Werner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stroe-Kunold, E., Werner, J. A drunk and her dog: a spurious relation? Cointegration tests as instruments to detect spurious correlations between integrated time series. Qual Quant 43, 913–940 (2009). https://doi.org/10.1007/s11135-008-9168-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11135-008-9168-9

Keywords

  • Spurious correlation
  • Spurious regression
  • Cointegration
  • Multivariate time series analysis
  • Psychological process research
  • Longitudinal analysis
  • Stationarity
  • Monte Carlo experiments