Skip to main content
Log in

Testing measurement invariance using multigroup CFA: differences between educational groups in human values measurement

  • Original Paper
  • Published:
Quality & Quantity Aims and scope Submit manuscript

Abstract

This article applies the testing procedures for measurement invariance using multigroup confirmatory factor analysis (MGCFA). It illustrates these procedures by investigating the factorial structure and invariance of the Portraits Value Questionnaire (PVQ, Schwartz et al.: J. Cross Cult. Psychol. 32(5), 519–542 (2001)) across three education groups in a population sample (N  =  1,677). The PVQ measures 10 basic values that Schwartz postulates to comprehensively describe the human values recognized in all societies (achievement, hedonism, self-direction, benevolence, conformity, security, stimulation, power, tradition and universalism). We also estimate and compare the latent means of the three education groups. The analyses show partial invariance for most of the 10 values and parameters. As expected, the latent means show that less educated respondents attribute more importance to security, tradition, and conformity values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H.: Factor analysis and AIC. Psychometrika 52, 317–322 (1987)

    Article  Google Scholar 

  • Baumgartner, H., Steenkamp, J.-B.E.M.: Multi-group latent variable models for varying numbers of items and factors with cross-national and longitudinal applications. Mark. Lett. 9(1), 21–35 (1998)

    Article  Google Scholar 

  • Bentler, P.M.: Comparative fit indexes in structural models. Psychol. Bull. 107, 238–246 (1990)

    Article  Google Scholar 

  • Billiet, J.: Cross-cultural equivalence with structural equation modeling. In: Mohler, P.P.(eds) Cross-Cultural Survey Methods, pp. 247–264. John Wiley & Sons Inc., New Jersey (2002)

    Google Scholar 

  • Bollen, K.A.: Structural Equations With Latent Variables. Wiley, New York (1989)

    Google Scholar 

  • Browne, M.W., Cudeck, R.: Alternative ways of assessing model fit. In: Bollen, K.A., Long, J.S.(eds) Testing Structural Equation Models, pp. 36–162. Sage, Newbury Park (1993)

    Google Scholar 

  • Byrne, B.M., Shavelson, R.J., Muthén, B.: Testing for the equivalence of factor covariance and mean structures: the issue of partial measurement invariance. Psychol. Bull. 105(3), 456–466 (1989)

    Article  Google Scholar 

  • Cole, D.A., Maxwell, S.E.: Multitrait-multimethod comparisons across populations: a confirmatory factor analytic approach. Multivariate Behav. Res. 20, 389–417 (1985)

    Article  Google Scholar 

  • Converse, P.: The nature of belief systems in mass publics. In: Apter, D.(eds) Ideology and Discontent, pp. 206–261. Free Press, New York (1964)

    Google Scholar 

  • Cronbach, L.J., Meehl, P.E.: Construct validity in psychological tests. Psychol. Bull. 52, 281–302 (1955)

    Article  Google Scholar 

  • Davidov, E., Schmidt, P., Schwartz, S.H.: Bringing values back in: a multiple group comparison with 20 countries using the European Social Survey. Public Opin. Q. (in press)

  • Hayduk, L.A.: Structural Equation Modeling—Essentials and Advances. The John Hopkins University Press, Baltimore and London (1989)

    Google Scholar 

  • Hinz, A., Brähler, E., Schmidt, P., Albani, C.: Investigating the circumplex structure of the Portraits Value Questionnaire (PVQ). J. Individ. Differ. 26(4), 185–193 (2005)

    Article  Google Scholar 

  • Hu, L.-T., Bentler, P.M.: Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equation Model. 6, 1–55 (1999)

    Article  Google Scholar 

  • Jöreskog, K.G.: Simultaneous factor analysis in several populations. Psychometrika 36, 409–426 (1971)

    Article  Google Scholar 

  • Jöreskog, K.G., Sörbom, D.: Lisrel 8 User’s Reference Guide. Scientific Software International, Chicago (1993)

    Google Scholar 

  • Judd, C., Milburn, M., Krosnick, J.: Political involvement and attitude structure in the general public. Am. Sociol. Rev. 46, 660–669 (1981)

    Article  Google Scholar 

  • Little, T.D.: Mean and covariance structures (MACS) analyses of cross-cultural data: practical and theoretical issues. Multivariate Behav. Res. 32(1), 53 (1997)

    Article  Google Scholar 

  • Little, T.D., Slegers, D.W., Card, N.A.: A non-arbitrary method of identifying and scaling latent variables in SEM and MACS models. Struct. Equation Model. 13(1), 59–72 (2006)

    Article  Google Scholar 

  • Marsh, H.W., Hocevar, D.: Application of confirmatory factor analysis to the study of self-concept: first- and higher order factor models and their invariance across groups. Psychol. Bull. 97(3), 562–582 (1985)

    Article  Google Scholar 

  • Meredith, W.: Measurement invariance, factor analysis and factorial invariance. Psychometrika 58(4), 525–543 (1993)

    Article  Google Scholar 

  • Millsap, R.E., Everson, H.: Confirmatory measurement model comparisons using latent means. Multivariate Behav. Res. 26(3), 479–497 (1991)

    Article  Google Scholar 

  • Millsap, R.E., Hartog, S.B.: Alpha, beta, and gamma change in evaluation research. J. Appl. Psychol. 73, 564–574 (1988)

    Google Scholar 

  • Muthén, B.: Latent variable modeling in heterogeneous populations. Psychometrika 54(4), 557–585 (1989)

    Article  Google Scholar 

  • Ployhardt, R.E., Oswald, F.L.: Applications of mean and covariance structure analysis: integrating correlational and experimental approaches. Organ. Res. Methods 7(1), 27–65 (2004)

    Article  Google Scholar 

  • Saris, W.E., Sniderman, P.M.: Studies in Public Opinion: Attitudes, Nonattitudes, Measurement Error, and Change. University Press, Princeton (2004)

    Google Scholar 

  • Schmidt, P., Bamberg, S., Davidov, E., Hermann, J., Schwartz, S.H.: Die Messung von Werten mit dem, Portraits Value Questionnaire’ [The Measurement of Values with the, Portraits Value Questionnaire’]. Zeitschrift für Sozialpsychologie. 38(4), 249–263

  • Schmitt, M.J., Schwartz, S.H., Steyer, R., Schmitt, T.: Measurement models for the Schwartz values inventory. Eur. J. Psychol. Assess. 9(2), 107–121 (1993)

    Google Scholar 

  • Schwartz, S.H.: Universals in the content and structure of values: theoretical advances and empirical tests in 20 countries In: Zanna, M. (ed.) Advances in Experimental Social Psychology, vol. 25, pp. 1–65. Academic Press, Orlando (1992)

  • Schwartz, S.H.: Basic human values: their content and structure across countries. In: Tamayo, A., Porto, J.B.(eds) Valores e comportamento nas organizações [Values and Behavior in Organizations], pp. 21–55. Vozes, Petrópolis (2005a)

    Google Scholar 

  • Schwartz, S.H.: Robustness and fruitfulness of a theory of universals in individual human values. In: Tamayo, A., Porto, J.B.(eds) Valores e comportamento nas organizações [Values and Behavior in Organizations], pp. 56–95. Vozes, Petrópolis (2005 b)

    Google Scholar 

  • Schwartz, S.H., Boehnke, K.: Evaluating the structure of human values with confirmatory factor analysis. J. Res. Pers. 38(3), 230–255 (2004)

    Article  Google Scholar 

  • Schwartz, S.H., Melech, G., Lehmann, A., Burgess, S., Harris, M., Owens, V.: Extending the cross-cultural validity of the theory of basic human values with a different method of measurement. J. Cross Cult. Psychol. 32(5), 519–542 (2001)

    Article  Google Scholar 

  • Sörbom, D.: An alternative to the methodology for analysis of covariances. Psychometrika 43, 381–396 (1978)

    Article  Google Scholar 

  • Spini, D.: Measurement equivalence of 10 value types from the Schwartz value survey across 21 countries. J. Cross Cult. Psychol. 34(1), 3–23 (2003)

    Article  Google Scholar 

  • Steenkamp, J.-B.E.M., Baumgartner, H.: Assessing measurement invariance in crossnational consumer research. J. Consum. Res. 25, 78–90 (1998)

    Article  Google Scholar 

  • Thompson, M.S., Green, S.B.: Evaluating between-group differences in latent means. In: Hancock, G.R., Mueller, R.O.(eds) Structural Equation Modeling: A Second Course, pp. 119–169. Information Age, Greenwich (2006)

    Google Scholar 

  • Vijver, F.J.R., Leung, K.: Methods and Data Analysis for Cross-Cultural Research. Sage, Newbury Park (1997)

    Google Scholar 

  • Vandenberg, R.J., Lance, C.E.: A review and synthesis of the measurement invariance literature: suggestions, practices, and recommendations for organizational research. Organ. Res. Methods 3(1), 4–69 (2000)

    Article  Google Scholar 

  • Zaller, J.R.: The Nature and Origins of Mass Opinion. University Press, Cambridge (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Steinmetz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmetz, H., Schmidt, P., Tina-Booh, A. et al. Testing measurement invariance using multigroup CFA: differences between educational groups in human values measurement. Qual Quant 43, 599–616 (2009). https://doi.org/10.1007/s11135-007-9143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11135-007-9143-x

Keywords

Navigation