Amir, M.: Sticky Brownian motion as the strong limit of a sequence of random walks. Stoch. Process. Appl. 39, 221–237 (1991)
Article
Google Scholar
Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, Hoboken (1999)
Book
Google Scholar
Boniece, B.C., Didier, G.: On operator fractional Lévy motion: Integral representations and time reversibility. Appl. Probab., to appear, Adv (2021)
Bramson, M., Dai, J.G.: Heavy traffic limits for some queueing networks. Ann. Appl. Probab. 11, 49–88 (2001)
Google Scholar
Bernard, A., Kharroubi, A.: Régulations déterministes et stochastiques dans le premier orthant de \({\mathbb{R}}^n\). Stoch. Stoch. Rep. 34, 149–167 (1991)
Article
Google Scholar
Dai, H.S.: Convergence in law to operator fractional Brownian motions. J. Theor. Probab. 26(3), 676–696 (2013)
Article
Google Scholar
Dai, W.Y.: Heavy traffic limit theorems for a queue with Poisson on/off long-range dependent sources and general service time distribution. Acta Math. Appl. Sinica 4, 807–822 (2012)
Article
Google Scholar
Delgado, R.: A reflected fbm limit for fluid models with on/off sources under heavy traffic. Stoch. Process. Appl. 117(2), 188–201 (2007)
Article
Google Scholar
Debicki, K., Mandjes, M.: Traffic with an fBm limit: convergence of the stationary workload process. Queueing Syst. 46, 113–127 (2004)
Article
Google Scholar
Didier, G., Meerschaert, M.M., Pipiras, V.: Domain and range symmetries of operator fractional Brownian fields. Stoch. Process. Appl. 128(1), 39–78 (2018)
Article
Google Scholar
Debicki, K., Palmowski, Z.: On-off fluid models in heavy traffic environment. Queueing Syst. 33, 327–338 (1999)
Article
Google Scholar
Didier, G., Pipiras, V.: Integral representations and properties of operator fractional Brownian motions. Bernoulli 17(1), 1–33 (2011)
Article
Google Scholar
Didier, G., Pipiras, V.: Exponents, symmetry groups and classification of operator fractional Brownian motions. J. Theor. Probab. 25, 353–395 (2012)
Article
Google Scholar
D’Auria, B., Samorodnitsky, G.: Limit behaviour of fluid queues and networks. Oper. Res. 53(6), 933–945 (2005)
Article
Google Scholar
Dai, H.S., Zhao, Y.Q.: Stationary distributions for two-dimensional sticky Brownian motions: exact tail asymptotics and extreme value distributions. Sci. China Math. 64, 2539–2562 (2021)
Article
Google Scholar
Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, Hoboken (1986)
Book
Google Scholar
Feller, W.: Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77, 1–31 (1954)
Article
Google Scholar
Gamarnik, G., Zeevi, A.: Validity of heavy traffic steady-state approximation in generalized Jackson networks. Ann. Appl. Probab. 16, 56–90 (2006)
Article
Google Scholar
Harrison, J.M., Lemoine, A.J.: Sticky Brownian motion as the limit of storage processes. J. Appl. Probab. 18, 216–226 (1981)
Article
Google Scholar
Itô, K., McKean, H.P.: Brownian motions on a half line. Illinois J. Math. 7, 181–231 (1963)
Article
Google Scholar
Iglehart, D.L., Whitt, W.: Multiple channel queues in heavy traffic I. Adv. Appl. Probab. 2, 150–177 (1970)
Article
Google Scholar
Jackson, J.R.: Networks of waiting lines. Operation Res. 5, 518–521 (1957)
Article
Google Scholar
Konstantopoulos, T.: The Skorohod reflection problem for functions with discontinuities (contractive case). Technical Report, ECE Department, University of Texas at Austin (2000)
Kingman, J.F.C.: On queues in heavy traffic. Proc. Camb. Phil. Soc. 57, 902–904 (1961)
Article
Google Scholar
Konstantopoulos, T., Lin, S.J.: Fractional Brownian approximations of queueing networks. In: Glasserman, P., Sigman, K., Yao, D. (eds.) Stochastic Networks: Stability and Rare Events. Lecture Notes in Statistics, vol. 117, pp. 257–274. Springer-Verlag, New York (1996)
Chapter
Google Scholar
Konstantopoulos, T., Lin, S.J.: On a class of Lévy stochastic networks. Queueing Syst. 46, 409–437 (2004)
Article
Google Scholar
Kilpi, J., Norros, I.: Testing the Gaussian approximation of aggregate traffic. In: 2nd ACM SIGCOMM Internet Measurement Workshop, P. 49–61 (2002)
Lemoine, A.J.: Limit theorems for generalized single server queues. Adv. Appl. Probab. 6, 159–174 (1974)
Article
Google Scholar
Lemoine, A.J.: Limit theorems for generalized single server queues: the exceptional system. SIAM J. Appl. Math. 28, 596–606 (1975)
Article
Google Scholar
Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of Ethernet traffic. IEEE/ACM Trans. Netw. 2, 1–15 (1994)
Article
Google Scholar
Lee, C., Weerasinghe, A.: Stationarity and control of a tandem fluid network with fractional Brownian motion input. Adv. Appl. Probab. 43(3), 847–874 (2011)
Article
Google Scholar
Mandjes, M.: Queueing networks with Gaussian inputs. In: Boucherie, R., van Dijk, N. (eds), Queueing Networks. International Series in Operations Research and Management Science, 154, 531-560, Springer, Boston (2011)
Majewski, K.: Fractional Brownian heavy traffic approximations of multi-class feedforward queueing networks. Queueing Syst. 50, 199–230 (2005)
Article
Google Scholar
Miyazawa, M.: Diffusion approximation for stationary analysis of queues and their networks: a review. J. Operations Res. Soc. Japan 58, 104–148 (2015)
Article
Google Scholar
Maejima, M., Mason, J.D.: Operator-self-similar stable processes. Stoch. Process. Appl. 54(1), 139–163 (1994)
Article
Google Scholar
Mannersalo, P., Norros, I.: A most probable path approach to queueing systems with general Gaussian input. Comput. Netw. 40, 399–412 (2002)
Article
Google Scholar
Mikosch, T., Resnick, S., Stegeman, H.R.: Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12, 23–68 (2002)
Article
Google Scholar
Massoulie, L., Simonian, A.: Large buffer asymptotics for the queue with fractional Brownian input. J. Appl. Prob. 36, 894–906 (1999)
Article
Google Scholar
Meerschaert, M.M., Scheffler, H.P.: Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Wiley, Hoboken (2001)
Google Scholar
Mandjes, M., van Uitert, M.: Sample-path large deviations for tandem and priority queues with Gaussian inputs. Ann. Appl. Probab. 15(2), 1193–1226 (2005)
Article
Google Scholar
Mason, J.D., Xiao, Y.M.: Sample path properties of operator-slef-similar Gaussian random fields. Theory Probab. Appl. 46, 94–116 (2001)
Google Scholar
Norros, I.: A storage model with self-similar input. Queueing Syst. 16, 387–396 (1994)
Article
Google Scholar
Rácz, M.Z., Shkolnikov, M.: Multidimensional sticky Brownian motions as limits of exclusion processes. Ann. Appl. Probab. 25(3), 1155–1188 (2015)
Article
Google Scholar
Welch, P.D.: On a generalized M/G/1 queuing process in which the first customer of each busy period receives exceptional service. Operation Res. 12, 736–752 (1964)
Article
Google Scholar
Williams, R.J.: An invariance principle for semimartingale reflecting Brownian motions in an orthant. Queueing Syst. 30, 5–25 (1998)
Article
Google Scholar