Skip to main content
Log in

On classes of Bitcoin-inspired infinite-server queueing systems

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We analyze the time-dependent behavior of various types of infinite-server queueing systems, where, within each system we consider, jobs interact with one another in ways that induce batch departures from the system. One example of such a queue was introduced in the recent paper of Frolkova and Mandjes (Stochastic Models, 2019) in order to model a type of one-sided communication between two users in the Bitcoin network: here we show that a time-dependent version of the distributional Little’s law can be used to study the time-dependent behavior of this model, as well as a related model where blocks are communicated to a user at a rate that is allowed to vary with time. We also show that the time-dependent behavior of analogous infinite-server queueing systems with batch arrivals and exponentially distributed services can be analyzed just as thoroughly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, J., Whitt, W.: Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput. 7, 36–43 (1995)

    Article  Google Scholar 

  2. Asmussen, S.: Applied Probability and Queues. Springer, New York (2003)

    Google Scholar 

  3. Baccelli, F., Brémaud, P.: Elements of Queueing Theory: Palm-Martingale Calculus and Stochastic Recurrences. Springer, New York (2003)

    Book  Google Scholar 

  4. Bertsimas, D., Mourtzinou, G.: Transient laws of nonstationary queueing systems and their applications. Queueing Syst. 25, 115–155 (1997)

    Article  Google Scholar 

  5. Bowden, R., Keeler, H.P., Krzesinski, A.E., Taylor, P.G.: Block arrivals in the Bitcoin blockchain. Preprint accessible through the arXiv at (2018). https://arxiv.org/abs/1801.07447

  6. Brémaud, P.: Characteristics of queueing systems observed at events and the connection between stochastic intensity and Palm probability. Queueing Syst. 5, 99–111 (1989)

    Article  Google Scholar 

  7. Brémaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New York (1999)

    Book  Google Scholar 

  8. Brockwell, P., Gani, J., Resnick, S.: Birth, immigration, and catastrophe processes. Adv. Appl. Probab. 14, 709–731 (1982)

    Article  Google Scholar 

  9. Den Iseger, P.: Numerical transform inversion using Gaussian quadrature. Probab. Eng. Inform. Sci. 20, 1–44 (2006)

    Article  Google Scholar 

  10. Eick, S.G., Massey, W.A., Whitt, W.: The physics of the \(\text{ M }_{t}/\text{ G }/\infty \) queue. Oper. Res. 41, 731–742 (1993)

    Article  Google Scholar 

  11. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: Financial Cryptography and Data Security, pp. 436–434. Springer, Berlin (2013)

    Google Scholar 

  12. Fralix, B., van Leeuwaarden, J., Boxma, O.: Factorization identities for a general class of reflected processes. J. Appl. Probab. 50, 632–653 (2013)

    Article  Google Scholar 

  13. Fralix, B., Riaño, G.: A new look at transient versions of Little’s law, with applications to M/G/1 preemptive Last-Come-First-Served queues. J. Appl. Probab. 47, 459–473 (2010)

    Article  Google Scholar 

  14. Franco, P.: Understanding Bitcoin: Cryptography, Engineering, and Economics. Wiley, Chichester (2015)

    Google Scholar 

  15. Frolkova, M., Mandjes, M.: A Bitcoin-inspired infinite-server model with a random fluid limit. Stoch. Models 35, 1–32 (2019)

    Article  Google Scholar 

  16. Göbel, J., Keeler, H.P., Krzesinski, A.E., Taylor, P.G.: Bitcoin blockchain dynamics: the selfish-mine strategy in the presence of propagation delay. Perform. Eval. 104, 23–41 (2016)

    Article  Google Scholar 

  17. Huberman, G., Leshno, J.D., Moallemi, C.: An economic analysis of the Bitcoin payment system. Draft accessible at (2019). https://moallemi.com/ciamac/papers/bitcoin-2017.pdf

  18. Javier, K., Fralix, B.: A further study of some Markovian Bitcoin models from Göbel et al. Submitted for publication: a draft is available at http://bfralix.people.clemson.edu/preprints.htm (2019)

  19. Kallenberg, O.: Random Measures, 3rd edn. Akademie-Verlag, Berlin (1983)

    Google Scholar 

  20. Kasahara, S., Kawahara, J.: Effect of Bitcoin fee on transaction-confirmation process. J. Ind. Manag. Organ. 15, 365–386 (2019)

    Google Scholar 

  21. Kawase, Y., Kasahara, S.: Transaction-confirmation time for Bitcoin: a queueing analytical approach to blockchain mechanism. Queueing Theory Netw. Appl. LNCS 10591, 75–88 (2017)

    Article  Google Scholar 

  22. Koops, D.: Predicting the confirmation time of Bitcoin transactions. Preprint accessible on arXiv at (2018). https://arxiv.org/abs/1809.10596

  23. Latouche, G., Ramaswami, V.: Introduction to Matrix-Analytic Methods in Stochastic Modeling. ASA-SIAM Publications, Philadelphia (1999)

    Book  Google Scholar 

  24. Li, Q., Ma, J., Chang, Y.: Blockchain queue theory. Preprint accessible on arXiv at (2018). https://arxiv.org/abs/1808.01795

  25. Li, Q., Ma, J., Chang, Y., Ma, F., Yu, H.: Markov processes in blockchain systems. Preprint accessible on arXiv at (2019). https://arxiv.org/abs/1904.03598

  26. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Paper available at (2008). https://bitcoin.org/bitcoin.pdf

  27. Ricci, S., Ferreira, E., Menasche, D.S., Ziviani, A., Souza, J.E., Vieira, A.B.: Learning blockchain delays: a queueing theory approach. ACM Sigmetrics Perform. Eval. Rev. 46, 122–125 (2018)

    Article  Google Scholar 

  28. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decentralized digital currencies. IEEE Commun. Surv. Tutor. 18, 2084–2123 (2016)

    Article  Google Scholar 

  29. Wolff, R.W.: Poisson arrivals see time averages. Oper. Res. 30, 223–231 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank an anonymous referee for providing many useful comments on a previous draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Fralix.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section contains a slight rephrasing of Propositions 4.1 and 4.2 on page 17 of [15]. Throughout this appendix, we assume \(\{X_{n}\}_{n \ge 1}\) is a sequence of i.i.d. nonnegative random variables having a finite, positive mean, and we set \(\lambda := 1/\mathbb {E}[X_{1}]\). From these random variables, we define the partial sums \(\{S_{n}\}_{n \ge 1}\) as

$$\begin{aligned} S_{n} := \sum _{k=1}^{n}X_{k}, ~~~~~~ n \ge 1. \end{aligned}$$

Proposition 4.1

As \(n \rightarrow \infty \),

$$\begin{aligned} \frac{1}{n^{2}}\sum _{\ell = 1}^{n}S_{\ell } \rightarrow \frac{1}{2\lambda } \end{aligned}$$

with probability one.

Proof

This result can be proven through an application of the classical Strong Law of Large Numbers: we omit the details. \(\square \)

Proposition 4.2

Let \(\{X_{n}\}_{n \ge 1}\) be a sequence of i.i.d random variables having finite mean, and fix two real numbers xy satisfying \(0< y < x\). Then, by setting \(\rho := \lambda /\mu \), and letting \(\mu \downarrow 0\) (\(\lambda \) stays fixed) we find that

$$\begin{aligned} \frac{\alpha }{\sqrt{\rho }} \sum _{\ell = \lceil \sqrt{\rho } y \rceil }^{\lceil \sqrt{\rho } x \rceil }X_{\ell } + \sum _{\ell = \lceil \sqrt{\rho } y \rceil }^{\lceil \sqrt{\rho } x \rceil }\ell \mu X_{\ell } \Rightarrow \frac{\alpha (x-y)}{\lambda } + \frac{(x^{2} - y^{2})}{2} \end{aligned}$$
(36)

as \(\rho \rightarrow \infty \). Furthermore,

$$\begin{aligned} \frac{\alpha }{\sqrt{\rho }}\sum _{\ell = 1}^{\lceil \sqrt{\rho } x \rceil }X_{\ell } + \sum _{\ell = 1}^{\lceil \sqrt{\rho } x \rceil }\ell \mu X_{\ell } \Rightarrow \frac{\alpha x}{\lambda } + \frac{x^{2}}{2} \end{aligned}$$
(37)

as \(\rho \rightarrow \infty \).

Proof

First, note that for any two integers mn satisfying \(1 \le m \le n\), we have

$$\begin{aligned} \frac{\alpha }{\sqrt{\rho }}\sum _{\ell = m}^{n}X_{\ell } + \sum _{\ell = m}^{n}\mu \ell X_{\ell }&{\mathop {=}\limits ^{d}}\frac{\alpha }{\sqrt{\rho }}\sum _{\ell = m}^{n}X_{n - \ell + 1} + \frac{\lambda }{\rho }\sum _{\ell = m}^{n}\ell X_{n - \ell + 1} \\= & {} \frac{\alpha }{\sqrt{\rho }}\sum _{\ell = m}^{n}X_{n - \ell + 1}\\&+\, \frac{\lambda (m-1)}{\rho }\sum _{\ell = m}^{n}X_{n - \ell + 1} + \frac{\lambda }{\rho }\sum _{\ell = m}^{n}(\ell - (m-1))X_{n - \ell + 1} \\= & {} \frac{\alpha }{\sqrt{\rho }}S_{n - m + 1} + \frac{\lambda }{\rho }(m-1)S_{n - m + 1} + \frac{\lambda }{\rho }\sum _{\ell = m}^{n}\sum _{z = m}^{\ell }X_{n - \ell + 1} \\= & {} \frac{\alpha }{\sqrt{\rho }}S_{n - m + 1} + \frac{\lambda }{\rho }(m-1)S_{n - m + 1} + \frac{\lambda }{\rho }\sum _{z = m}^{n}\sum _{\ell = z}^{n}X_{n - \ell + 1} \\= & {} \frac{\alpha }{\sqrt{\rho }}S_{n - m + 1} + \frac{\lambda }{\rho }(m-1)S_{n - m + 1} + \frac{\lambda }{\rho }\sum _{z = m}^{n}S_{n - z + 1} \\= & {} \frac{\alpha }{\sqrt{\rho }}S_{n - m + 1} + \frac{\lambda }{\rho }(m-1)S_{n - m + 1} + \frac{\lambda }{\rho }\sum _{\ell = 1}^{n - m + 1}S_{\ell }. \end{aligned}$$

Using both the classical Strong Law of Large Numbers, as well as Proposition 4.1, we find

$$\begin{aligned}&\frac{\alpha }{\sqrt{\rho }} \sum _{\ell = \lceil \sqrt{\rho } y \rceil }^{\lceil \sqrt{\rho } x \rceil }X_{\ell } + \sum _{\ell = \lceil \sqrt{\rho } y \rceil }^{\lceil \sqrt{\rho } x \rceil }\ell \mu X_{\ell }\\&\quad {\mathop {=}\limits ^{d}} \frac{\alpha }{\sqrt{\rho }}S_{\lceil \sqrt{\rho } x \rceil - \lceil \sqrt{\rho } y \rceil + 1}\\&\qquad + \, \lambda \left[ \frac{\lceil \sqrt{\rho } y \rceil - 1}{\sqrt{\rho }}\right] \frac{1}{\sqrt{\rho }}S_{\lceil \sqrt{\rho } x \rceil - \lceil \sqrt{\rho } y \rceil + 1} + \frac{\lambda }{\rho }\sum _{\ell = 1}^{\lceil \sqrt{\rho } x \rceil - \lceil \sqrt{\rho } y \rceil + 1}S_{\ell } \\&\quad {\mathop {\rightarrow }\limits ^{a.s}} \frac{\alpha (x-y)}{\lambda } + y(x-y) + \frac{(x-y)^{2}}{2} \\&\quad = \frac{\alpha (x-y)}{\lambda } + \frac{(x^{2} - y^{2})}{2}, \end{aligned}$$

which proves that

$$\begin{aligned} \frac{\alpha }{\sqrt{\rho }} \sum _{\ell = \lceil \sqrt{\rho } y \rceil }^{\lceil \sqrt{\rho } x \rceil }X_{\ell } + \sum _{\ell = \lceil \sqrt{\rho } y \rceil }^{\lceil \sqrt{\rho } x \rceil }\ell \mu X_{\ell } \Rightarrow \frac{\alpha (x-y)}{\lambda } + \frac{(x^{2} - y^{2})}{2} \end{aligned}$$

as \(n \rightarrow \infty \), thus proving (36). Finally, observe that statement (37) can be established with the same type of argument. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fralix, B. On classes of Bitcoin-inspired infinite-server queueing systems. Queueing Syst 95, 29–52 (2020). https://doi.org/10.1007/s11134-019-09643-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-019-09643-w

Keywords

Mathematics Subject Classification

Navigation