Skip to main content
Log in

Fitting correlated arrival and service times and related queueing performance

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider a queue where the inter-arrival times are correlated and, additionally, service times are also correlated with inter-arrival times. We show that the resulting model can be interpreted as an MMAP[K]/PH[K]/1 queue for which matrix geometric solution algorithms are available. The major result of this paper is the presentation of approaches to fit the parameters of the model, namely the MMAP, the PH distribution and the parameters introducing correlation between inter-arrival and service times, according to some trace of inter-arrival and corresponding service times. Two different algorithms are presented. The first algorithm is based on available methods to compute a MAP from the inter-arrival times and a PH distribution from the service times. Afterward, the correlation between inter-arrival and service times is integrated by solving a quadratic programming problem over some joint moments. The second algorithm is of the expectation maximization type and computes all parameters of the MAP and the PH distribution in an iterative way. It is shown that both algorithms yield sufficiently accurate results with an acceptable effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Failure trace archive. http://fta.scem.uws.edu.au/

  2. Grid workload archive. http://gwa.ewi.tudelft.nl/

  3. Internet traffic archive. http://ita.ee.lbl.gov/

  4. Mawi working group traffic archive. http://mawi.wide.ad.jp/mawi/

  5. Parallel workload archive. http://www.cs.huji.ac.il/labs/parallel/workload/

  6. Adan, I.J.B.F., Kulkarni, V.G.: Single-server queue with Markov-dependent inter-arrival and service times. Queueing Syst. 45(2), 113–134 (2003)

    Article  Google Scholar 

  7. Alfa, A.S., Neuts, M.F.: Modelling vehicular traffic using the discrete time Markovian arrival process. Transp. Sci. 29(2), 109–117 (1995)

    Article  Google Scholar 

  8. Asmussen, S., Nerman, O., Olsson, M.: Fitting phase type distributions via the EM algorithm. Scand. J. Stat. 23, 419–441 (1996)

    Google Scholar 

  9. Bhat, U.N.: Sixty years of queueing theory. Manag. Sci. 15(6), B280–B294 (1969)

    Article  Google Scholar 

  10. Biller, B., Nelson, B.L.: Modeling and generating multivariate time-series input processes using a vector autoregressive technique. ACM Trans. Model. Comput. Simul. 13(3), 211–237 (2003)

    Article  Google Scholar 

  11. Bini, D., Meini, B., Steffé, S., Pérez, J.F., Houdt, B.V.: Smcsolver and Q-MAM: tools for matrix-analytic methods. SIGMETRICS Perform. Eval. Rev. 39(4), 46 (2012)

    Article  Google Scholar 

  12. Bini, D.A., Latouche, G., Meini, B.: Solving nonlinear matrix equations arising in tree-like stochastic processes. Linear Algebra Appl. 366, 39–64 (2003)

    Article  Google Scholar 

  13. Bobbio, A., Horváth, A., Scarpa, M., Telek, M.: Acyclic discrete phase type distributions: properties and a parameter estimation algorithm. Perform. Eval. 54(1), 1–32 (2003)

    Article  Google Scholar 

  14. Bobbio, A., Horváth, A., Telek, M.: The scale factor: a new degree of freedom in phase-type approximation. Perform. Eval. 56(1–4), 121–144 (2004)

    Article  Google Scholar 

  15. Boxma, O.J., Perry, D.: A queueing model with dependence between service and interarrival time. Eur. J. Oper. Res. 128(13), 611–624 (2001)

    Article  Google Scholar 

  16. Breuer, L.: An EM algorithm for batch Markovian arrival processes and its comparison to a simpler estimation procedure. Ann. OR 112(1–4), 123–138 (2002)

    Article  Google Scholar 

  17. Buchholz, P., Kemper, P., Kriege, J.: Multi-class Markovian arrival processes and their parameter fitting. Perform. Eval. 67(11), 1092–1106 (2010)

    Article  Google Scholar 

  18. Buchholz, P., Kriege, J.: A heuristic approach for fitting MAPs to moments and joint moments. In: Proceedings of the 6th International Conference on Quantitative Evaluation of Systems (QEST 2009), pp. 53–62. IEEE Computer Society, Los Alamitos (2009). doi:10.1109/QEST.2009.36. http://doi.ieeecomputersociety.org/10.1109/QEST.2009.36

  19. Buchholz, P., Kriege, J., Felko, I.: Input Modeling with Phase-Type Distributions and Markov Models—Theory and Applications. Briefs in Mathematics. Springer, Berlin (2014)

    Book  Google Scholar 

  20. Buchholz, P., Telek, M.: On minimal representations of rational arrival processes. Ann. OR 202(1), 35–58 (2013)

    Article  Google Scholar 

  21. Casale, G., Zhang, E.Z., Smirni, E.: Trace data characterization and fitting for Markov modeling. Perform. Eval. 67(2), 61–79 (2010)

    Article  Google Scholar 

  22. Combé, M.B., Boxma, O.J.: BMAP modeling of a correlated queue. In: Walrand, J., Bagchi, K., Zobrist, G.W. (eds.) Network Performance Modeling and Simulation, pp. 177–196. Gordon and Breach Science Publishers, Philadelphia (1999)

    Google Scholar 

  23. Conolly, B.W.: The waiting time process for a certain correlated queue. Oper. Res. 16(5), 1006–1015 (1968)

    Article  Google Scholar 

  24. Conolly, B.W., Haidi, N.: A correlated queue. J. Appl. Probab. 6(1), 122–136 (1969)

    Article  Google Scholar 

  25. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum-likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977)

    Google Scholar 

  26. Fendick, K.W., Saksena, V.R., Whitt, W.: Dependence in packet queues. IEEE Trans. Commun. 37(11), 1173–1183 (1989)

    Article  Google Scholar 

  27. He, Q.M.: Analysis of a continuous time SM[K]/PH[K]/1/FCFS queue: age process, sojourn times, and queue lengths. J. Syst. Sci. Complex. 25(1), 133–155 (2012)

    Article  Google Scholar 

  28. He, Q.M., Alfa, A.S.: The discrete time MMAP[K]/PH[K]/1/LCFS-GPR queue and its variants. In: Proceedings of the 3rd International Conference on Matrix Analytic Methods, pp. 167–190 (2000)

  29. He, Q.M., Neuts, M.: Markov arrival processes with marked transitions. Stoch. Process. Appl. 74, 37–52 (1998)

    Article  Google Scholar 

  30. Horváth, A., Telek, M.: Markovian modeling of real data traffic: heuristic phase type and MAP fitting of heavy tailed and fractal like samples. In: Calzarossa, M., Tucci, S. (eds.) Performance Evaluation of Complex Systems: Techniques and Tools, Performance 2002, Tutorial Lectures. Lecture Notes in Computer Science, vol. 2459, pp. 405–434. Springer, Berlin (2002)

    Chapter  Google Scholar 

  31. Horváth, G.: Efficient analysis of the queue length moments of the MMAP/MAP/1 preemptive priority queue. Perform. Eval. 69(12), 684–700 (2012)

    Article  Google Scholar 

  32. Horváth, G., Buchholz, P., Telek, M.: A MAP fitting approach with independent approximation of the inter-arrival time distribution and the lag-correlation. In: Proceedings of 2nd International Conference on the Quantitative Analysis of Systems. IEEE CS Press, Washington (2005)

  33. Iyer, S.K., Manjunath, D.: Queues with dependency between interarrival and service times using mixtures of bivariates. Stoch. Models 22(1), 3–20 (2006)

    Article  Google Scholar 

  34. Klemm, A., Lindemann, C., Lohmann, M.: Modeling IP traffic using the batch Markovian arrival process. Perform. Eval. 54(2), 149–173 (2003)

    Article  Google Scholar 

  35. Kriege, J., Buchholz, P.: An empirical comparison of MAP fitting algorithms. In: Measurement, Modelling, and Evaluation of Computing Systems and Dependability and Fault Tolerance, 15th International GI/ITG Conference, MMB&DFT 2010, Essen, Germany, March 15–17, 2010. Proceedings, Lecture Notes in Computer Science, vol. 5987, pp. 259–273. Springer, Berlin (2010)

  36. Lambert, J., van Houdt, B., Blondia, C.: Queue with correlated service and inter-arrival times and its application to optical buffers. Stoch. Models 22(2), 233–251 (2006)

    Article  Google Scholar 

  37. Lütkepohl, H.: Introduction to Multiple Time Series Analysis. Springer, Berlin (1993)

    Book  Google Scholar 

  38. Machihara, F.: A BMAP/SM/1 queue with service times depending on the arrival process. Queueing Syst. 33(4), 277–291 (1999)

    Article  Google Scholar 

  39. Okamura, H., Dohi, T., Trivedi, K.S.: A refined EM algorithm for PH distributions. Perform. Eval. 68(10), 938–954 (2011)

    Article  Google Scholar 

  40. Pérez, J.F., van Velthoven, J., van Houdt, B.: Q-MAM: a tool for solving infinite queues using matrix-analytic methods. In: 3rd International ICST Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2008, Athens, Greece, October 20–24, 2008, p. 16 (2008)

  41. Takine, T.: Queue length distribution in a FIFO single-server queue with multiple arrival streams having different service time distributions. Queueing Syst. 39(4), 349–375 (2001)

    Article  Google Scholar 

  42. Telek, M., Horváth, G.: A minimal representation of Markov arrival processes and a moments matching method. Perform. Eval. 64(9–12), 1153–1168 (2007)

    Article  Google Scholar 

  43. Thümmler, A., Buchholz, P., Telek, M.: A novel approach for phase-type fitting with the EM algorithm. IEEE Trans. Dependable Secure Comput. 3(3), 245–258 (2006)

    Article  Google Scholar 

  44. van Houdt, B.: Analysis of the adaptive MMAP[K]/PH[K]/1 queue: a multi-type queue with adaptive arrivals and general impatience. Eur. J. Oper. Res. 220(3), 695–704 (2012)

    Article  Google Scholar 

  45. van Houdt, B.: A matrix geometric representation for the queue length distribution of multitype semi-Markovian queues. Perform. Eval. 69(7–8), 299–314 (2012)

    Article  Google Scholar 

  46. van Houdt, B., Blondia, C.: The waiting time distribution of a type k customer in a discrete-time FCFS MMAP[K]/PH[K]/c (c \(=\) 1, 2) queue using QBDs. Stoch. Models 20(1), 55–69 (2004)

    Article  Google Scholar 

  47. van Houdt, B., van Leeuwaarden, J.: Triangular M/G/1-type and tree-like quasi-birth-death Markov chains. INFORMS J. Comput. 23(1), 165–171 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers and the editor for their very thorough reviews that helped us a lot to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Buchholz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchholz, P., Kriege, J. Fitting correlated arrival and service times and related queueing performance. Queueing Syst 85, 337–359 (2017). https://doi.org/10.1007/s11134-017-9514-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-017-9514-5

Keywords

Mathematics Subject Classification

Navigation