Advertisement

Queueing Systems

, Volume 85, Issue 3–4, pp 337–359 | Cite as

Fitting correlated arrival and service times and related queueing performance

  • Peter Buchholz
  • Jan Kriege
Article

Abstract

In this paper, we consider a queue where the inter-arrival times are correlated and, additionally, service times are also correlated with inter-arrival times. We show that the resulting model can be interpreted as an MMAP[K]/PH[K]/1 queue for which matrix geometric solution algorithms are available. The major result of this paper is the presentation of approaches to fit the parameters of the model, namely the MMAP, the PH distribution and the parameters introducing correlation between inter-arrival and service times, according to some trace of inter-arrival and corresponding service times. Two different algorithms are presented. The first algorithm is based on available methods to compute a MAP from the inter-arrival times and a PH distribution from the service times. Afterward, the correlation between inter-arrival and service times is integrated by solving a quadratic programming problem over some joint moments. The second algorithm is of the expectation maximization type and computes all parameters of the MAP and the PH distribution in an iterative way. It is shown that both algorithms yield sufficiently accurate results with an acceptable effort.

Keywords

Markovian arrival process Marked Markovian arrival processes Phase type distributions Multi-class queues Expectation maximization algorithm 

Mathematics Subject Classification

65C40 60K20 68M20 

Notes

Acknowledgements

We thank the anonymous reviewers and the editor for their very thorough reviews that helped us a lot to improve the paper.

References

  1. 1.
    Failure trace archive. http://fta.scem.uws.edu.au/
  2. 2.
    Grid workload archive. http://gwa.ewi.tudelft.nl/
  3. 3.
    Internet traffic archive. http://ita.ee.lbl.gov/
  4. 4.
    Mawi working group traffic archive. http://mawi.wide.ad.jp/mawi/
  5. 5.
  6. 6.
    Adan, I.J.B.F., Kulkarni, V.G.: Single-server queue with Markov-dependent inter-arrival and service times. Queueing Syst. 45(2), 113–134 (2003)CrossRefGoogle Scholar
  7. 7.
    Alfa, A.S., Neuts, M.F.: Modelling vehicular traffic using the discrete time Markovian arrival process. Transp. Sci. 29(2), 109–117 (1995)CrossRefGoogle Scholar
  8. 8.
    Asmussen, S., Nerman, O., Olsson, M.: Fitting phase type distributions via the EM algorithm. Scand. J. Stat. 23, 419–441 (1996)Google Scholar
  9. 9.
    Bhat, U.N.: Sixty years of queueing theory. Manag. Sci. 15(6), B280–B294 (1969)CrossRefGoogle Scholar
  10. 10.
    Biller, B., Nelson, B.L.: Modeling and generating multivariate time-series input processes using a vector autoregressive technique. ACM Trans. Model. Comput. Simul. 13(3), 211–237 (2003)CrossRefGoogle Scholar
  11. 11.
    Bini, D., Meini, B., Steffé, S., Pérez, J.F., Houdt, B.V.: Smcsolver and Q-MAM: tools for matrix-analytic methods. SIGMETRICS Perform. Eval. Rev. 39(4), 46 (2012)CrossRefGoogle Scholar
  12. 12.
    Bini, D.A., Latouche, G., Meini, B.: Solving nonlinear matrix equations arising in tree-like stochastic processes. Linear Algebra Appl. 366, 39–64 (2003)CrossRefGoogle Scholar
  13. 13.
    Bobbio, A., Horváth, A., Scarpa, M., Telek, M.: Acyclic discrete phase type distributions: properties and a parameter estimation algorithm. Perform. Eval. 54(1), 1–32 (2003)CrossRefGoogle Scholar
  14. 14.
    Bobbio, A., Horváth, A., Telek, M.: The scale factor: a new degree of freedom in phase-type approximation. Perform. Eval. 56(1–4), 121–144 (2004)CrossRefGoogle Scholar
  15. 15.
    Boxma, O.J., Perry, D.: A queueing model with dependence between service and interarrival time. Eur. J. Oper. Res. 128(13), 611–624 (2001)CrossRefGoogle Scholar
  16. 16.
    Breuer, L.: An EM algorithm for batch Markovian arrival processes and its comparison to a simpler estimation procedure. Ann. OR 112(1–4), 123–138 (2002)CrossRefGoogle Scholar
  17. 17.
    Buchholz, P., Kemper, P., Kriege, J.: Multi-class Markovian arrival processes and their parameter fitting. Perform. Eval. 67(11), 1092–1106 (2010)CrossRefGoogle Scholar
  18. 18.
    Buchholz, P., Kriege, J.: A heuristic approach for fitting MAPs to moments and joint moments. In: Proceedings of the 6th International Conference on Quantitative Evaluation of Systems (QEST 2009), pp. 53–62. IEEE Computer Society, Los Alamitos (2009). doi: 10.1109/QEST.2009.36. http://doi.ieeecomputersociety.org/10.1109/QEST.2009.36
  19. 19.
    Buchholz, P., Kriege, J., Felko, I.: Input Modeling with Phase-Type Distributions and Markov Models—Theory and Applications. Briefs in Mathematics. Springer, Berlin (2014)CrossRefGoogle Scholar
  20. 20.
    Buchholz, P., Telek, M.: On minimal representations of rational arrival processes. Ann. OR 202(1), 35–58 (2013)CrossRefGoogle Scholar
  21. 21.
    Casale, G., Zhang, E.Z., Smirni, E.: Trace data characterization and fitting for Markov modeling. Perform. Eval. 67(2), 61–79 (2010)CrossRefGoogle Scholar
  22. 22.
    Combé, M.B., Boxma, O.J.: BMAP modeling of a correlated queue. In: Walrand, J., Bagchi, K., Zobrist, G.W. (eds.) Network Performance Modeling and Simulation, pp. 177–196. Gordon and Breach Science Publishers, Philadelphia (1999)Google Scholar
  23. 23.
    Conolly, B.W.: The waiting time process for a certain correlated queue. Oper. Res. 16(5), 1006–1015 (1968)CrossRefGoogle Scholar
  24. 24.
    Conolly, B.W., Haidi, N.: A correlated queue. J. Appl. Probab. 6(1), 122–136 (1969)CrossRefGoogle Scholar
  25. 25.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum-likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977)Google Scholar
  26. 26.
    Fendick, K.W., Saksena, V.R., Whitt, W.: Dependence in packet queues. IEEE Trans. Commun. 37(11), 1173–1183 (1989)CrossRefGoogle Scholar
  27. 27.
    He, Q.M.: Analysis of a continuous time SM[K]/PH[K]/1/FCFS queue: age process, sojourn times, and queue lengths. J. Syst. Sci. Complex. 25(1), 133–155 (2012)CrossRefGoogle Scholar
  28. 28.
    He, Q.M., Alfa, A.S.: The discrete time MMAP[K]/PH[K]/1/LCFS-GPR queue and its variants. In: Proceedings of the 3rd International Conference on Matrix Analytic Methods, pp. 167–190 (2000)Google Scholar
  29. 29.
    He, Q.M., Neuts, M.: Markov arrival processes with marked transitions. Stoch. Process. Appl. 74, 37–52 (1998)CrossRefGoogle Scholar
  30. 30.
    Horváth, A., Telek, M.: Markovian modeling of real data traffic: heuristic phase type and MAP fitting of heavy tailed and fractal like samples. In: Calzarossa, M., Tucci, S. (eds.) Performance Evaluation of Complex Systems: Techniques and Tools, Performance 2002, Tutorial Lectures. Lecture Notes in Computer Science, vol. 2459, pp. 405–434. Springer, Berlin (2002)CrossRefGoogle Scholar
  31. 31.
    Horváth, G.: Efficient analysis of the queue length moments of the MMAP/MAP/1 preemptive priority queue. Perform. Eval. 69(12), 684–700 (2012)CrossRefGoogle Scholar
  32. 32.
    Horváth, G., Buchholz, P., Telek, M.: A MAP fitting approach with independent approximation of the inter-arrival time distribution and the lag-correlation. In: Proceedings of 2nd International Conference on the Quantitative Analysis of Systems. IEEE CS Press, Washington (2005)Google Scholar
  33. 33.
    Iyer, S.K., Manjunath, D.: Queues with dependency between interarrival and service times using mixtures of bivariates. Stoch. Models 22(1), 3–20 (2006)CrossRefGoogle Scholar
  34. 34.
    Klemm, A., Lindemann, C., Lohmann, M.: Modeling IP traffic using the batch Markovian arrival process. Perform. Eval. 54(2), 149–173 (2003)CrossRefGoogle Scholar
  35. 35.
    Kriege, J., Buchholz, P.: An empirical comparison of MAP fitting algorithms. In: Measurement, Modelling, and Evaluation of Computing Systems and Dependability and Fault Tolerance, 15th International GI/ITG Conference, MMB&DFT 2010, Essen, Germany, March 15–17, 2010. Proceedings, Lecture Notes in Computer Science, vol. 5987, pp. 259–273. Springer, Berlin (2010)Google Scholar
  36. 36.
    Lambert, J., van Houdt, B., Blondia, C.: Queue with correlated service and inter-arrival times and its application to optical buffers. Stoch. Models 22(2), 233–251 (2006)CrossRefGoogle Scholar
  37. 37.
    Lütkepohl, H.: Introduction to Multiple Time Series Analysis. Springer, Berlin (1993)CrossRefGoogle Scholar
  38. 38.
    Machihara, F.: A BMAP/SM/1 queue with service times depending on the arrival process. Queueing Syst. 33(4), 277–291 (1999)CrossRefGoogle Scholar
  39. 39.
    Okamura, H., Dohi, T., Trivedi, K.S.: A refined EM algorithm for PH distributions. Perform. Eval. 68(10), 938–954 (2011)CrossRefGoogle Scholar
  40. 40.
    Pérez, J.F., van Velthoven, J., van Houdt, B.: Q-MAM: a tool for solving infinite queues using matrix-analytic methods. In: 3rd International ICST Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2008, Athens, Greece, October 20–24, 2008, p. 16 (2008)Google Scholar
  41. 41.
    Takine, T.: Queue length distribution in a FIFO single-server queue with multiple arrival streams having different service time distributions. Queueing Syst. 39(4), 349–375 (2001)CrossRefGoogle Scholar
  42. 42.
    Telek, M., Horváth, G.: A minimal representation of Markov arrival processes and a moments matching method. Perform. Eval. 64(9–12), 1153–1168 (2007)CrossRefGoogle Scholar
  43. 43.
    Thümmler, A., Buchholz, P., Telek, M.: A novel approach for phase-type fitting with the EM algorithm. IEEE Trans. Dependable Secure Comput. 3(3), 245–258 (2006)CrossRefGoogle Scholar
  44. 44.
    van Houdt, B.: Analysis of the adaptive MMAP[K]/PH[K]/1 queue: a multi-type queue with adaptive arrivals and general impatience. Eur. J. Oper. Res. 220(3), 695–704 (2012)CrossRefGoogle Scholar
  45. 45.
    van Houdt, B.: A matrix geometric representation for the queue length distribution of multitype semi-Markovian queues. Perform. Eval. 69(7–8), 299–314 (2012)CrossRefGoogle Scholar
  46. 46.
    van Houdt, B., Blondia, C.: The waiting time distribution of a type k customer in a discrete-time FCFS MMAP[K]/PH[K]/c (c \(=\) 1, 2) queue using QBDs. Stoch. Models 20(1), 55–69 (2004)CrossRefGoogle Scholar
  47. 47.
    van Houdt, B., van Leeuwaarden, J.: Triangular M/G/1-type and tree-like quasi-birth-death Markov chains. INFORMS J. Comput. 23(1), 165–171 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Informatik IVTU DortmundDortmundGermany

Personalised recommendations