Skip to main content
Log in

On converse Lyapunov theorems for fluid network models

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We consider the class of closed generic fluid network (GFN) models, which provides an abstract framework containing a wide variety of fluid networks. Within this framework a Lyapunov method for stability of GFN models was proposed by Ye and Chen. They proved that stability of a GFN model is equivalent to the existence of a functional on the set of paths that is decaying along paths. This result falls short of a converse Lyapunov theorem in that no state-dependent Lyapunov function is constructed. In this paper we construct state-dependent Lyapunov functions in contrast to path-wise functionals. We first show by counterexamples that closed GFN models do not provide sufficient information that allow for a converse Lyapunov theorem. To resolve this problem we introduce the class of strict GFN models by forcing closed GFN models to satisfy a concatenation and a semicontinuity condition. For the class of strict GFN models we define a state-dependent Lyapunov function and show that a converse Lyapunov theorem holds. Finally, it is shown that common fluid network models, like general work-conserving and priority fluid network models as well as certain linear Skorokhod problems define strict GFN models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P.: Viability Theory. Systems & Control: Foundations & Applications. Birkhäuser, Boston (1991)

    Google Scholar 

  2. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Modern Birkhäuser Classics. Birkhäuser, Boston (2009)

    Google Scholar 

  3. Bacciotti, A., Rosier, L.: Lyapunov Functions and Stability in Control Theory, 2nd edn. Communications and Control Engineering. Springer, Berlin (2005)

    Google Scholar 

  4. Bernard, A., El Kharroubi, A.: Régulations déterministes et stochastiques dans le premier “orthant” de ℝn. Stoch. Stoch. Rep. 34, 149–167 (1991)

    Google Scholar 

  5. Bramson, M.: Instability of FIFO queueing networks. Ann. Appl. Probab. 4(2), 414–431 (1994)

    Article  Google Scholar 

  6. Bramson, M.: Stability of Queueing Networks. Lecture Notes in Mathematics, vol. 1950. Springer, Berlin (2008)

    Google Scholar 

  7. Chen, H.: Fluid approximations and stability of multiclass queueing networks: Work-conserving disciplines. Ann. Appl. Probab. 5(3), 637–665 (1995)

    Article  Google Scholar 

  8. Chen, H.: A sufficient condition for the positive recurrence of a semimartingale reflecting Brownian motion in an orthant. Ann. Appl. Probab. 6(3), 758–765 (1996)

    Article  Google Scholar 

  9. Chen, H., Ye, H.: Piecewise linear Lyapunov function for the stability of multiclass priority fluid networks. IEEE Trans. Autom. Control 47(4), 564–575 (2002)

    Article  Google Scholar 

  10. Chen, H., Zhang, H.: Stability of multiclass queueing networks under FIFO service discipline. Math. Oper. Res. 22(3), 691–725 (1997)

    Article  Google Scholar 

  11. Chen, H., Zhang, H.: Stability of multiclass queueing networks under priority service disciplines. Oper. Res. 48(1), 26–37 (2000)

    Article  Google Scholar 

  12. Clarke, F., Ledyaev, Y., Stern, R.: Asymptotic stability and smooth Lyapunov functions. J. Differ. Equ. 149(1), 69–114 (1998)

    Article  Google Scholar 

  13. Dai, J.: On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models. Ann. Appl. Probab. 5(1), 49–77 (1995)

    Article  Google Scholar 

  14. Dai, J.: A fluid limit model criterion for instability of multiclass queueing networks. Ann. Appl. Probab. 6(3), 751–757 (1996)

    Article  Google Scholar 

  15. Dai, J.: Stability of fluid and stochastic processing networks. MaPhySto, Miscellanea, No. 9, Centre for Mathematical Physics and Stochastics, University of Aarhus, Denmark (1999)

  16. Dai, J., Lin, W.: Maximum pressure policies in stochastic processing networks. Oper. Res. 53(2), 197–218 (2005)

    Article  Google Scholar 

  17. Dai, J., Lin, W.: Asymptotic optimality of maximum pressure policies in stochastic processing networks. Ann. Appl. Probab. 18(6), 2239–2299 (2008)

    Article  Google Scholar 

  18. Dai, J., Hasenbein, J.J., Vande Vate, J.H.: Stability and instability of a two-station queueing network. Ann. Appl. Probab. 14(1), 326–377 (2004)

    Article  Google Scholar 

  19. Dai, J., Hasenbein, J.J., Kim, B.: Stability of join-the-shortest-queue networks. Queueing Syst. 57(4), 129–145 (2007)

    Article  Google Scholar 

  20. Dupuis, P., Williams, R.J.: Lyapunov functions for semimartingale reflecting Brownian motions. Ann. Probab. 22(2), 680–702 (1994)

    Article  Google Scholar 

  21. El Kharroubi, A., Ben Tahar, A., Yaacoubi, A.: On the stability of the linear Skorokhod problem in an orthant. Math. Methods Oper. Res. 56, 243–258 (2002)

    Article  Google Scholar 

  22. Ethier, S.N., Kurtz, T.G.: Markov Processes. Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics (1986)

    Google Scholar 

  23. Filippov, A.F.: On certain questions in the theory of optimal control. J. Soc. Ind. Appl. Math., Ser. A Control 1, 76–84 (1962)

    Article  Google Scholar 

  24. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Applied Mathematical Sciences, vol. 99. Springer, New York (1993)

    Google Scholar 

  25. Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I. Modelling, State Space Analysis, Stability and Robustness. Texts in Applied Mathematics, vol. 48. Springer, Berlin (2005)

    Google Scholar 

  26. Kellett, C.M., Teel, A.R.: Smooth Lyapunov functions and robustness of stability for difference inclusions. Syst. Control Lett. 52(5), 395–405 (2004)

    Article  Google Scholar 

  27. Kumar, P., Seidman, T.I.: Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems. IEEE Trans. Autom. Control 35(3), 289–298 (1990)

    Article  Google Scholar 

  28. Pukhalski, A.A., Rybko, A.N.: Nonergodicity of queueing networks when their fluid models are unstable. Probl. Pereda. Inf. 36, 26–46 (2000)

    Google Scholar 

  29. Robert, Ph.: Stochastic Networks and Queues. Applications of Mathematics, vol. 52. Springer, Berlin (2003)

    Google Scholar 

  30. Rybko, A.A., Stolyar, A.L.: Ergodicity of stochastic processes describing the operation of open queueing networks. Probl. Inf. Transm. 28(3), 199–220 (1992)

    Google Scholar 

  31. Schönlein, M.: Stability and robustness of fluid networks: A Lyapunov perspective. Ph.D. Thesis, University of Würzburg, Germany (2012)

  32. Smirnov, G.V.: Introduction to the Theory of Differential Inclusions. Graduate Studies in Mathematics, vol. 41. AMS, Providence (2002)

    Google Scholar 

  33. Stolyar, A.L.: On the stability of multiclass queueing networks: A relaxed sufficient condition via limiting fluid processes. Markov Process. Relat. Fields 1(4), 491–512 (1995)

    Google Scholar 

  34. Teel, A., Praly, L.: A smooth Lyapunov function from a class-\(\mathcal{KL}\) estimate involving two positive semidefinite functions. ESAIM Control Optim. Calc. Var. 5, 313–367 (2000)

    Article  Google Scholar 

  35. Ye, H.Q., Chen, H.: Lyapunov method for the stability of fluid networks. Oper. Res. Lett. 28(3), 125–136 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schönlein.

Additional information

This research was funded by the Volkswagen Foundation under grant I/83 087.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönlein, M., Wirth, F. On converse Lyapunov theorems for fluid network models. Queueing Syst 70, 339–367 (2012). https://doi.org/10.1007/s11134-012-9279-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-012-9279-9

Keywords

Mathematics Subject Classification (2000)

Navigation