Skip to main content
Log in

On the flow-level stability of data networks without congestion control: the case of linear networks and upstream trees

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

In this paper, flow models of networks without congestion control are considered. Users generate data transfers according to some Poisson processes and transmit corresponding packet at a fixed rate equal to their access rate until the entire document is received at the destination; some erasure codes are used to make the transmission robust to packet losses. We study the stability of the stochastic process representing the number of active flows in two particular cases: linear networks and upstream trees. For the case of linear networks, we notably use fluid limits and an interesting phenomenon of “time scale separation” occurs. Bounds on the stability region of linear networks are given. For the case of upstream trees, underlying monotonic properties are used. Finally, the asymptotic stability of those processes is analyzed when the access rate of the users decreases to 0. An appropriate scaling is introduced and used to prove that the stability region of those networks is asymptotically maximized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley Series in Probability and Statistics. Wiley, New York (1999)

    Book  Google Scholar 

  2. Bonald, T., Borst, S.C., Proutière, A.: How mobility impacts the flow-level performance of wireless data systems. In: Proceedings of INFOCOM, vol. 3, pp. 1872–1881 (2004)

    Google Scholar 

  3. Bonald, T., Massoulié, L., Proutière, A., Virtamo, J.: A queueing analysis of max-min fairness, proportional fairness, and balanced fairness. Queueing Syst.: Theory Appl. 53, 65–84 (2006)

    Article  Google Scholar 

  4. Bonald, T., Feuillet, M., Proutière, A.: Is the “Law of the Jungle” sustainable for the Internet? In: Proceedings of INFOCOM, pp. 28–36, April (2009)

    Google Scholar 

  5. Borst, S., Jonckheere, M., Leskelä, L.: Stability of parallel queueing systems with coupled service rates. Discret. Event Dyn. Syst. 18(4), 447–472 (2008)

    Article  Google Scholar 

  6. Dai, J.G.: On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models. Ann. Appl. Probab. 5, 49–77 (1995)

    Article  Google Scholar 

  7. Dumas, V., Guillemin, F., Robert, P.: A Markovian analysis of additive-increase multiplicative-decrease (AIMD) algorithms. Adv. Appl. Probab. 34(1), 85–111 (2002)

    Article  Google Scholar 

  8. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)

    Google Scholar 

  9. Floyd, S.: Highspeed TCP for large congestion windows. RFC 896 (2003)

  10. Ganesh, A., Lilienthal, S., Manjunath, D., Proutière, A., Simatos, F.: Load balancing via random local search in closed and open systems. In: SIGMETRICS, pp. 287–298 (2010)

    Google Scholar 

  11. Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math, 2nd Ser. 20(4), 292–296 (1919)

    Article  Google Scholar 

  12. Hunt, P.J., Kurtz, T.G.: Large loss networks. Stoch. Process. Appl. 53(2), 363–378 (1994)

    Article  Google Scholar 

  13. Jin, Cheng, Wei, D.X., Low, S.H.: FAST TCP: motivation, architecture, algorithms, performance. In: INFOCOM 2004, vol. 4, pp. 2490–2501 (2004)

    Google Scholar 

  14. Kurtz, T.G.: Averaging for martingale problems and stochastic approximation. In: Applied Stochastic Analysis, US-French Workshop. Lecture Notes in Control and Information Sciences, vol. 177, pp. 186–209. Springer, Berlin (1992)

    Google Scholar 

  15. Massey, W.A.: Stochastic orderings for Markov processes on partially ordered spaces. Math. Oper. Res. 12(2), 350–367 (1987)

    Article  Google Scholar 

  16. Massoulié, L., Roberts, J.W.: Bandwidth sharing and admission control for elastic traffic. Telecommun. Syst. 15, 185–201 (2000)

    Article  Google Scholar 

  17. Meyn, S.: Transience of multiclass queueing networks via fluid limit models. Ann. Appl. Probab. 5, 946–957 (1995)

    Article  Google Scholar 

  18. Mitzenmacher, M.: Digital fountains: a survey and look forward. In: Information Theory Workshop, 2004, pp. 271–276. IEEE, New York (2004)

    Google Scholar 

  19. Nagle, J.: Congestion Control in IP/TCP Internetworks. RFC 896, January (1984)

  20. Raghavan, B., Snoeren, A.C.: Decongestion control. In: Proceedings of the 5th ACM Workshop on Hot Topics in Networks, November (2005)

    Google Scholar 

  21. Robert, P.: Stochastic Networks and Queues. Stochastic Modeling and Applied Probability Series. Springer, New York (2003). xvii+398 pp.

    Google Scholar 

  22. Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes & Martingales, vol. 1: Foundations. Cambridge University Press, Cambridge (2000) (1979)

    Google Scholar 

  23. Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes & Martingales, vol. 2: Itô Calculus. Cambridge University Press, Cambridge (2000) (1987)

    Google Scholar 

  24. Simatos, F., Tibi, D.: Spatial homogenization in a stochastic network with mobility. Ann. Appl. Probab. 20(1), 321–355 (2010)

    Article  Google Scholar 

  25. Xu, L., Harfoush, K., Rhee, I.: Binary increase congestion control (BIC) for fast long-distance networks. In: INFOCOM 2004, vol. 4, pp. 2514–2524 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Feuillet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feuillet, M. On the flow-level stability of data networks without congestion control: the case of linear networks and upstream trees. Queueing Syst 70, 105–143 (2012). https://doi.org/10.1007/s11134-011-9265-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-011-9265-7

Keywords

Mathematics Subject Classification (2000)

Navigation