Skip to main content
Log in

Determining an adequate probe separation for estimating the arrival rate in an M/D/1 queue using single-packet probing

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We present a technique to estimate the arrival rate from delay measurements, acquired using single-packet probing. With practical applications in mind, we investigate a lower bound on the value of probe separation, to obtain a satisfactory estimate in a fixed amount of time. This leads to a problem: how long does it take for an M/D/1 queue to converge to its steady state as a function of the load? We examine this problem using three independent approaches: the time until the autocovariance of the transient workload process becomes negligible; the time it takes for the first transient moment of the workload process to get close to its stationary limit; and the convergence rate of the transient workload distribution to stationarity. These approaches yield different, yet strikingly similar results. We conclude with a recommendation for the probe separation threshold, and a practical approach to obtaining an arrival rate estimate using single-packet probing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paxson, V., Floyd, S.: Wide area traffic: the failure of Poisson models. IEEE/ACM Trans. Netw. Univ. Mass. 3, 226–244 (1995)

    Article  Google Scholar 

  2. Moon, S.: Measurements and analysis of end-to-end delay and loss in the Internet. Ph.D. Thesis, University of Massachusetts (2000)

  3. Dovorlis, C., Ramanathan, P., Moore, D.: Packet-dispersion techniques and capacity-estimation methodology. IEEE Trans. Netw. 12, 963–977 (2004)

    Article  Google Scholar 

  4. Pasztor, A., Veitch, D.: Active probing using packet quartets. In: ACM SIGCOMM Internet Measurement Workshop (IMW-2002), pp. 293–305, Marseille (2002)

  5. Riberio, V., Navratil, J., Reidi, R., Cottrell, L.: Efficient available bandwidth estimation for network paths. In: PAM 2003, Passive and Active Measurement Workshop, La Jolla, California (2003)

  6. Liu, X., Ravindran, K., Loguinov, D.: Single-hop probing asymptotics in available bandwidth estimation: Sample-path analysis. In: ACM IMC, pp. 300–313 (2004)

  7. Kang, S., Liu, X., Dai, M., Loguinov, D.: Packet-pair bandwidth estimation: Stochastic analysis of a single congested node. In: IEEE ICNP, pp. 316–325 (2004)

  8. Chen, T.M., Walrand, J., Messerschmitt, D.G.: Parameter estimation for partially observed queues. IEEE Trans. Commun. 42 (1994)

  9. Basawa, I.V., Prabhu, N.U.: Estimation in single server queues. Nav. Res. Logist. Q. 28, 475–487 (1981)

    Article  Google Scholar 

  10. Basawa, I.V., Prabhu, N.U.: Large sample inference from single server queues. Queueing Syst. 3, 289–304 (1988)

    Article  Google Scholar 

  11. Basawa, I.V., Bhat, U.N., Lund, R.: Maximum likelihood estimation for single server queues from waiting time data. Queueing Syst. 24, 155–167 (1996)

    Article  Google Scholar 

  12. Acharya, S.K.: On normal approximation for maximum likelihood estimation from single server queues. Queueing Syst., Theory Appl. 31, 207–216 (1999)

    Article  Google Scholar 

  13. Narayan Bhat, U., Subba Rao, S.: Statistical analysis of queueing systems. Queueing Syst., Theory Appl. 1, 217–247 (1987)

    Article  Google Scholar 

  14. Takács, L.: Combinatorial Methods in the Theory of Stochastic Processes. Wiley, New York (1967)

    Google Scholar 

  15. Abate, J., Whitt, W.: Transient behaviour of the M/G/1 workload process. Oper. Res. 42, 750–764 (1994)

    Article  Google Scholar 

  16. Kleinrock, L.: Queueing Systems, vol. 1. Wiley, New York (1975)

    Google Scholar 

  17. Cochran, W.G.: Sampling Techniques, 2nd edn. Wiley, New York (1963), p. 78

    Google Scholar 

  18. Blanc, J.P.C., van Doorn, E.A.: Relaxation times for queueing systems. In: de Bakker, J.W., Hazewinkel, M., Lenstra, J.K. (eds.) Mathematics and Computer Science. C.W.I. Monograph 1, pp. 139–162. North-Holland, Amsterdam (1984)

    Google Scholar 

  19. Stamoulis, G.D., Tsitsikilis, J.N.: On the settling time of the congested G/G/1 queue. Laboratory for Information and Decision Systems Technical Report (1989). http://hdl.handle.net/1721.1/3149

  20. Masaaki, K.: On the relaxation time for single-server queues. Oper. Res. Jpn. 32, 103–111 (1989)

    Google Scholar 

  21. Merchant, A.: Settling times for M/G/1 queues. Queueing Syst. 8, 105–110 (1991)

    Article  Google Scholar 

  22. Prabhu, N.U.: Stochastic Storage Processes, Queues, Insurance Risk, Dams and Data Communication, 2nd edn. Springer, Berlin (1998)

    Google Scholar 

  23. Daigle, J.N.: Queueing theory with applications to packet telecommunication. In: Elementary Continuous-Time Markov-Chain Based Queueing Models. Springer, Berlin (2005). Chap. 3

    Google Scholar 

  24. Konstantopoulos, P., Baccelli, F.: On the cut-off phenomenon in some queueing systems. INRIA Research Report 1290 (1990). ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-1290.pdf

  25. NIST/SEMATECH, E-Handbook of Statistical Methods (2006). http://www.itl.nist.gov/div898/handbook/

  26. Lund, R.B., Meyn, S.P., Tweedie, R.L.: Computable exponential convergence rates for stochastically ordered Markov processes. Ann. Appl. Probab. 6, 218–237 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, A., Watson, R. Determining an adequate probe separation for estimating the arrival rate in an M/D/1 queue using single-packet probing. Queueing Syst 61, 255–272 (2009). https://doi.org/10.1007/s11134-009-9107-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-009-9107-z

Keywords

Mathematics Subject Classification (2000)

Navigation