Skip to main content
Log in

Health Benefits of High Voltage Electrostatic Field Processing of Fruits and Vegetables

  • Review
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

High voltage electrostatic field processing (HVEF) is a food preservation procedure frequently used to produce healthy minimally processed fruits and vegetables (F&V) as it reduces the growth of microorganisms and activates or inhibits various enzymes, thus retarding their natural ripening while preserving and even enhancing native nutritional quality and sensory characteristics. HVEF is one of the various nonthermal processing technology (NTPT) regarded as abiotic stress that can activate the antioxidant system of F&V and can also inhibith spoilage enzymes as, polyphenol oxidase (PPO), lipoxygenase (LOX), pectin methylesterase (PME), polygalacturonase (PG), cellulase (Cel), β-xylosidase, xyloglucan and endotransglycosylase/hydrolase, bringing positive effect on hardness, firmness, colour attributes, electric conductivity, antioxidant compounds, microstructure and decreasing electrolyte leakage (EL), malondialdehyde (MDA) contents and browning degree. This technique can also increase the contents of fructose, glucose, and sucrose and decrease the production of CO2 and H2O2. Additionally, it has been reported that HVEF could be used with other treatments, such as modified atmosphere packaging (MAP) and acidic electrolyzed water (AEW) treatment, to enhance its effects. Future works should deepen on elucidating the activation of the antioxidant systems by applying HVEF of critical enzymes related to the synthesis pathways of phenolic compounds (PC) and carotenoids (Car). Holistic approaches to the effects of HVEF on metabolism based on systems biology also need to be studied by considering the overall biochemical, physical, and process engineering related aspects of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Song X, Bredahl L, Diaz Navarro M et al (2022) Factors affecting consumer choice of novel non-thermally processed fruit and vegetables products: evidence from a 4-country study in Europe. Food Res Int 153:110975. https://doi.org/10.1016/j.foodres.2022.110975

    Article  PubMed  Google Scholar 

  2. Basak S, Chakraborty S (2022) The potential of nonthermal techniques to achieve enzyme inactivation in fruit products. Trends Food Sci Technol 123:114–129. https://doi.org/10.1016/j.tifs.2022.03.008

    Article  CAS  Google Scholar 

  3. Jacobo-Velázquez DA, Cuéllar-Villarreal MDR, Welti-Chanes J et al (2017) Nonthermal processing technologies as elicitors to induce the biosynthesis and accumulation of nutraceuticals in plant foods. Trends Food Sci Technol 60:80–87. https://doi.org/10.1016/j.tifs.2016.10.021

    Article  CAS  Google Scholar 

  4. López-Gámez G, Elez-Martínez P, Martín-Belloso O, Soliva-Fortuny R (2020) Enhancing phenolic content in carrots by pulsed electric fields during post-treatment time: effects on cell viability and quality attributes. Innov Food Sci Emerg Technol 59:102252. https://doi.org/10.1016/j.ifset.2019.102252

    Article  CAS  Google Scholar 

  5. Cuéllar-Villarreal MDR, Ortega-Hernández E, Becerra-Moreno A et al (2016) Effects of ultrasound treatment and storage time on the extractability and biosynthesis of nutraceuticals in carrot (Daucus carota). Postharvest Biol Technol 119:18–26. https://doi.org/10.1016/j.postharvbio.2016.04.013

    Article  CAS  Google Scholar 

  6. Lotfi M, Hamdami N, Dalvi-Isfahan M, Fallah-Joshaqani S (2022) Effects of high voltage electric field on storage life and antioxidant capacity of whole pomegranate fruit. Innovative Food Sci Emerg Technol 75:102888. https://doi.org/10.1016/j.ifset.2021.102888

    Article  CAS  Google Scholar 

  7. Yan M, Yuan B, Xie Y et al (2020) Improvement of postharvest quality, enzymes activity and polyphenoloxidase structure of Postharvest Agaricus Bisporus in response to high voltage electric field. Postharvest Biol Technol 166:111230. https://doi.org/10.1016/j.postharvbio.2020.111230

    Article  CAS  Google Scholar 

  8. Umair M, Jabbar S, Nasiru MM et al (2020) Sequential application of high-Voltage Electric Field Cold plasma treatment and acid blanching improves the quality of Fresh Carrot Juice (Daucus carota L). J Agric Food Chem 68:15311–15318. https://doi.org/10.1021/acs.jafc.0c03470

    Article  CAS  PubMed  Google Scholar 

  9. Zhang L, Zhang M, Mujumdar AS, Ma Y (2024) Intermittent high voltage electrostatic field and static magnetic field assisted modified atmosphere packaging alleviate mildew of postharvest strawberries after simulated transportation by activating the phenylpropanoid pathway. Food Chem 434:137444. https://doi.org/10.1016/j.foodchem.2023.137444

    Article  CAS  PubMed  Google Scholar 

  10. Elvira-Torales LI, García-Alonso J, Periago-Castón MJ (2019) Nutritional importance of carotenoids and their effect on Liver Health: a review. Antioxidants 8:229. https://doi.org/10.3390/antiox8070229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dalvi-Isfahan M, Hamdami N, Le-Bail A, Xanthakis E (2016) The principles of high voltage electric field and its application in food processing: a review. Food Res Int 89:48–62. https://doi.org/10.1016/j.foodres.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  12. Pérez-Gálvez A, Viera I, Roca M (2020) Carotenoids and chlorophylls as antioxidants. Antioxidants 9:505. https://doi.org/10.3390/antiox9060505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. NavaneethaKrishnan S, Rosales JL, Lee K-Y (2019) ROS-Mediated Cancer Cell killing through Dietary Phytochemicals. Oxidative Med Cell Longev 2019:1–16. https://doi.org/10.1155/2019/9051542

    Article  CAS  Google Scholar 

  14. Wallace TC, Bailey RL, Blumberg JB et al (2020) Fruits, vegetables, and health: a comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit Rev Food Sci Nutr 60:2174–2211. https://doi.org/10.1080/10408398.2019.1632258

    Article  CAS  PubMed  Google Scholar 

  15. FAO, Ministry of Social Development and Family of Chile (2021) Promoting safe and adequate fruit and vegetable consumption to improve health. FAO; Ministerio de Desarrollo Social y Familia de Chile MDSF;

  16. Knorr D, Watzke H (2019) Food Processing at a Crossroad. Front Nutr 6:85. https://doi.org/10.3389/fnut.2019.00085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leneveu-Jenvrin C, Charles F, Barba FJ, Remize F (2020) Role of biological control agents and physical treatments in maintaining the quality of fresh and minimally-processed fruit and vegetables. Crit Rev Food Sci Nutr 60:2837–2855. https://doi.org/10.1080/10408398.2019.1664979

    Article  CAS  PubMed  Google Scholar 

  18. El-Saber Batiha G, Hussein DE, Algammal AM et al (2021) Application of natural antimicrobials in food preservation: recent views. Food Control 126:108066. https://doi.org/10.1016/j.foodcont.2021.108066

    Article  CAS  Google Scholar 

  19. Eilenberg J, Hajek A, Lomer C Suggestions for unifying the terminology in biological control

  20. Abera G (2019) Review on high-pressure processing of foods. Cogent Food Agric 5:1568725. https://doi.org/10.1080/23311932.2019.1568725

    Article  CAS  Google Scholar 

  21. Astráin-Redín L, Ciudad-Hidalgo S, Raso J et al (2020) Application of High-Power Ultrasound in the Food Industry. In: Karakuş S (ed) Sonochemical Reactions. IntechOpen

  22. Laroque DA, Seó ST, Valencia GA et al (2022) Cold plasma in food processing: design, mechanisms, and application. J Food Eng 312:110748. https://doi.org/10.1016/j.jfoodeng.2021.110748

    Article  CAS  Google Scholar 

  23. Yu T, Niu L, Iwahashi H (2020) High-pressure Carbon Dioxide used for pasteurization in Food Industry. Food Eng Rev 12:364–380. https://doi.org/10.1007/s12393-020-09240-1

    Article  CAS  Google Scholar 

  24. Delorme MM, Guimarães JT, Coutinho NM et al (2020) Ultraviolet radiation: an interesting technology to preserve quality and safety of milk and dairy foods. Trends Food Sci Technol 102:146–154. https://doi.org/10.1016/j.tifs.2020.06.001

    Article  CAS  Google Scholar 

  25. Denoya GI, Colletti AC, Vaudagna SR, Polenta GA (2021) Application of non-thermal technologies as a stress factor to increase the content of health-promoting compounds of minimally processed fruits and vegetables. Curr Opin Food Sci 42:224–236. https://doi.org/10.1016/j.cofs.2021.06.008

    Article  CAS  Google Scholar 

  26. Xu C, Zhang X, Liang J et al (2022) Cell wall and reactive oxygen metabolism responses of strawberry fruit during storage to low voltage electrostatic field treatment. Postharvest Biol Technol 192:112017. https://doi.org/10.1016/j.postharvbio.2022.112017

    Article  CAS  Google Scholar 

  27. Umair M, Jabbar S, Nasiru M et al (2019) Exploring the potential of High-Voltage Electric Field Cold Plasma (HVCP) using a Dielectric Barrier Discharge (DBD) as a plasma source on the Quality Parameters of Carrot Juice. Antibiotics 8:235. https://doi.org/10.3390/antibiotics8040235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hsieh C-C, Chang C-K, Wong L-W et al (2020) Alternating current electric field inhibits browning of Pleurotus Ostreatus via inactivation of oxidative enzymes during postharvest storage. LWT 134:110212. https://doi.org/10.1016/j.lwt.2020.110212

    Article  CAS  Google Scholar 

  29. Zhao Y, Li L, Gao S et al (2023) Postharvest storage properties and quality kinetic models of cherry tomatoes treated by high-voltage electrostatic fields. LWT 176:114497. https://doi.org/10.1016/j.lwt.2023.114497

    Article  CAS  Google Scholar 

  30. Castorena-García JH, Martínez-Montes FJ, Robles-López MR et al (2013) EFFECT OF ELECTRIC FIELDS ON THE ACTIVITY OF POLYPHENOL OXIDASES. Revista Mexicana De Ingeniería Química 12:391–400

    Google Scholar 

  31. Zhang X, Zhang M, Law CL, Guo Z (2022) High-voltage electrostatic field-assisted modified atmosphere packaging for long-term storage of pakchoi and avoidance of off-flavors. Innovative Food Sci Emerg Technol 79:103032. https://doi.org/10.1016/j.ifset.2022.103032

    Article  CAS  Google Scholar 

  32. Liu C-E, Chen W-J, Chang C-K et al (2017) Effect of a high voltage electrostatic field (HVEF) on the shelf life of persimmons (Diospyros kaki). LWT 75:236–242. https://doi.org/10.1016/j.lwt.2016.08.060

    Article  CAS  Google Scholar 

  33. Bajgai TR, Hashinaga F, Isobe S et al (2006) Application of high electric field (HEF) on the shelf-life extension of emblic fruit (Phyllanthus emblica L). J Food Eng 74:308–313. https://doi.org/10.1016/j.jfoodeng.2005.03.023

    Article  Google Scholar 

  34. Chang C-K, Tsai S-Y, Gavahian M et al (2023) Direct and alternating current electric fields affect pectin esterase and cellulase in tomato (Solanum lycopersicum L.) fruit during storage. Postharvest Biol Technol 205:112495. https://doi.org/10.1016/j.postharvbio.2023.112495

    Article  CAS  Google Scholar 

  35. Chang X, Liang Y, Guo T et al (2023) Combined treatment of Acidic Electrolyzed Water and High-Voltage Electrostatic Field improves the Storage Quality of Huping Jujube (Ziziphus jujuba Mill. Cv. Huping). Foods 12:2762. https://doi.org/10.3390/foods12142762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kao N-Y, Tu Y-F, Sridhar K, Tsai P-J (2019) Effect of a high voltage electrostatic field (HVEF) on the shelf-life of fresh-cut broccoli (Brassica oleracea var. italica). LWT 116:108532. https://doi.org/10.1016/j.lwt.2019.108532

    Article  CAS  Google Scholar 

  37. Huang YC, Yang YH, Sridhar K, Tsai P-J (2021) Synergies of modified atmosphere packaging and high-voltage electrostatic field to extend the shelf-life of fresh-cut cabbage and baby corn. LWT 138:110559. https://doi.org/10.1016/j.lwt.2020.110559

    Article  CAS  Google Scholar 

  38. Chang X, Liang Y, Shi F et al (2023) Biochemistry behind firmness retention of jujube fruit by combined treatment of acidic electrolyzed water and high-voltage electrostatic field. Food Chemistry: X 19:100812. https://doi.org/10.1016/j.fochx.2023.100812

    Article  CAS  PubMed  Google Scholar 

  39. Lu Y, Jiang Y, Wang H et al (2024) Effect of space electric field on the shelf-life extension of plum fruit (GuoFeng17). J Food Eng 366:111866. https://doi.org/10.1016/j.jfoodeng.2023.111866

    Article  CAS  Google Scholar 

  40. Zheng S, Su M, Wang L et al (2021) Small signaling molecules in plant response to cold stress. J Plant Physiol 266:153534. https://doi.org/10.1016/j.jplph.2021.153534

    Article  CAS  PubMed  Google Scholar 

  41. Ortega-Hernández N, Welti-Chanes, et al (2019) Wounding and UVB light synergistically induce the biosynthesis of phenolic compounds and ascorbic acid in Red Prickly pears (Opuntia ficus-indica cv. Rojo Vigor) IJMS 20:5327. https://doi.org/10.3390/ijms20215327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jacobo-Velázquez DA, González-Agüero M, Cisneros-Zevallos L (2015) Cross-talk between signaling pathways: the link between plant secondary metabolite production and wounding stress response. Sci Rep 5:8608. https://doi.org/10.1038/srep08608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dalvi-Isfahan M, Havet M, Hamdami N, Le-Bail A (2023) Recent advances of high voltage electric field technology and its application in food processing: a review with a focus on corona discharge and static electric field. J Food Eng 353:111551. https://doi.org/10.1016/j.jfoodeng.2023.111551

    Article  CAS  Google Scholar 

  44. Cui Y, Zhuang C, Zeng R (2019) Electric field measurements under DC corona discharges in ambient air by electric field induced second harmonic generation. Appl Phys Lett 115:244101. https://doi.org/10.1063/1.5129778

    Article  Google Scholar 

  45. Du C, Gong X, Lin Y (2019) Decomposition of volatile organic compounds using corona discharge plasma technology. J Air Waste Manag Assoc 69:879–899. https://doi.org/10.1080/10962247.2019.1582441

    Article  PubMed  Google Scholar 

  46. Tian Y, Li M, Fu Y et al (2023) Development and experimental investigation of the narrow-gap coated electrostatic precipitator with a shield pre-charger for indoor air cleaning. Sep Purif Technol 309:123114. https://doi.org/10.1016/j.seppur.2023.123114

    Article  CAS  Google Scholar 

  47. Liao X, Muhammad AI, Chen S et al (2019) Bacterial spore inactivation induced by cold plasma. Crit Rev Food Sci Nutr 59:2562–2572. https://doi.org/10.1080/10408398.2018.1460797

    Article  CAS  PubMed  Google Scholar 

  48. Chen J, Hu Y, Wang J et al (2016) Combined effect of ozone treatment and modified atmosphere packaging on antioxidant Defense System of Fresh-Cut Green peppers: ENHANCING ANTIOXIDANT DEFENSE SYSTEM. J Food Process Preserv 40:1145–1150. https://doi.org/10.1111/jfpp.12695

    Article  CAS  Google Scholar 

  49. Admane N, Genovese F, Altieri G et al (2018) Effect of ozone or carbon dioxide pre-treatment during long-term storage of organic table grapes with modified atmosphere packaging. LWT 98:170–178. https://doi.org/10.1016/j.lwt.2018.08.041

    Article  CAS  Google Scholar 

  50. Abdipour M, Sadat Malekhossini P, Hosseinifarahi M, Radi M (2020) Integration of UV irradiation and chitosan coating: a powerful treatment for maintaining the postharvest quality of sweet cherry fruit. Sci Hort 264:109197. https://doi.org/10.1016/j.scienta.2020.109197

    Article  CAS  Google Scholar 

  51. Rajput VD, Harish, Singh RK et al (2021) Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to Abiotic Stress. Biology 10:267. https://doi.org/10.3390/biology10040267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hasanuzzaman M, Bhuyan MHM, Zulfiqar F et al (2020) Reactive oxygen species and antioxidant defense in plants under Abiotic stress: revisiting the crucial role of a Universal Defense Regulator. Antioxidants 9:681. https://doi.org/10.3390/antiox9080681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jacobo-Velázquez DA, Santana-Gálvez J, Cisneros-Zevallos L (2021) Designing Next-Generation Functional Food and beverages: combining Nonthermal Processing Technologies and Postharvest Abiotic stresses. Food Eng Rev 13:592–600. https://doi.org/10.1007/s12393-020-09244-x

    Article  Google Scholar 

  54. Belay ZA, Caleb OJ, Opara UL (2019) Influence of initial gas modification on physicochemical quality attributes and molecular changes in fresh and fresh-cut fruit during modified atmosphere packaging. Food Packaging Shelf Life 21:100359. https://doi.org/10.1016/j.fpsl.2019.100359

    Article  Google Scholar 

  55. Li J, Wu F, Nie L et al (2020) The production efficiency of reactive oxygen and Nitrogen Species (RONS) of AC and Pulse-DC plasma jet. IEEE Trans Plasma Sci 48:4204–4214. https://doi.org/10.1109/TPS.2020.3030985

    Article  CAS  Google Scholar 

  56. Li D, Li L, Xiao G et al (2018) Effects of elevated CO 2 on energy metabolism and γ-aminobutyric acid shunt pathway in postharvest strawberry fruit. Food Chem 265:281–289. https://doi.org/10.1016/j.foodchem.2018.05.106

    Article  CAS  PubMed  Google Scholar 

  57. Blanch M, Rosales R, Mateos R et al (2015) Effects of High CO 2 levels on Fermentation, Peroxidation, and Cellular Water stress in Fragaria vesca stored at low temperature in conditions of unlimited O 2. J Agric Food Chem 63:761–768. https://doi.org/10.1021/jf505715s

    Article  CAS  PubMed  Google Scholar 

  58. Liu E, Niu L, Yi Y et al (2020) Expression analysis of ERFs during storage under modified atmosphere packaging (high-concentration of CO2) of fresh-cut Lotus Root. Horts 55:216–223. https://doi.org/10.21273/HORTSCI14609-19

    Article  CAS  Google Scholar 

  59. Xing S, Zhang X, Gong H (2020) The effect of CO2 concentration on sweet cherry preservation in modified atmosphere packaging. Czech J Food Sci 38:103–108. https://doi.org/10.17221/255/2019-CJFS

    Article  CAS  Google Scholar 

  60. Zhang X, Zhang M, Chitrakar B et al (2022) Novel combined use of red-white LED illumination and modified atmosphere packaging for maintaining Storage Quality of Postharvest Pakchoi. Food Bioprocess Technol 15:590–605. https://doi.org/10.1007/s11947-022-02771-x

    Article  CAS  Google Scholar 

  61. Dorostkar M, Moradinezhad F, Ansarifar E (2022) Influence of active modified atmosphere packaging pre-treatment on Shelf Life and Quality attributes of Cold stored Apricot Fruit. Int J Fruit Sci 22:402–413. https://doi.org/10.1080/15538362.2022.2047137

    Article  Google Scholar 

  62. Jin S, Ding Z, Xie J (2021) Modified Atmospheric Packaging of Fresh-Cut Amaranth (Amaranthus tricolor L.) for extending Shelf Life. Agriculture 11:1016. https://doi.org/10.3390/agriculture11101016

    Article  CAS  Google Scholar 

  63. Chen Y, Hung Y-C, Chen M, Lin H (2017) Effects of acidic electrolyzed oxidizing water on retarding cell wall degradation and delaying softening of blueberries during postharvest storage. LWT 84:650–657. https://doi.org/10.1016/j.lwt.2017.06.011

    Article  CAS  Google Scholar 

  64. Chen Y, Xie H, Tang J et al (2020) Effects of acidic electrolyzed water treatment on storability, quality attributes and nutritive properties of longan fruit during storage. Food Chem 320:126641. https://doi.org/10.1016/j.foodchem.2020.126641

    Article  CAS  PubMed  Google Scholar 

  65. Moustafa-Farag M, Elkelish A, Dafea M et al (2020) Role of Melatonin in Plant Tolerance to Soil stressors: Salinity, pH and heavy metals. Molecules 25:5359. https://doi.org/10.3390/molecules25225359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jia L, Li Y, Liu G, He J (2022) Acidic electrolyzed water improves the postharvest quality of jujube fruit by regulating antioxidant activity and cell wall metabolism. Sci Hort 304:111253. https://doi.org/10.1016/j.scienta.2022.111253

    Article  CAS  Google Scholar 

  67. De La Rosa LA, Moreno-Escamilla JO, Rodrigo-García J, Alvarez-Parrilla E (2019) Phenolic compounds. Postharvest Physiology and Biochemistry of fruits and vegetables. Elsevier, pp 253–271

  68. Cömert ED, Mogol BA, Gökmen V (2020) Relationship between color and antioxidant capacity of fruits and vegetables. Curr Res Food Sci 2:1–10. https://doi.org/10.1016/j.crfs.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  69. Valdez-Miranda JI, Acosta-Ramírez C, Robles-López MR et al (2024) Effect of the high voltage electrostatic field on the ripening process as color changes of bananas. XXIV Congreso Nacional, XIII Congreso Internacional De Ingeniería Bioquímica, XXI Jornadas Científicas De Biomedicina Y Biotecnología Molecular, CMIBQ. JOURNAL OF BIOENGINEERING AND BIOMEDICINE RESEARCH, Mexico

    Google Scholar 

  70. Fu X, Cheng S, Liao Y et al (2018) Comparative analysis of pigments in red and yellow banana fruit. Food Chem 239:1009–1018. https://doi.org/10.1016/j.foodchem.2017.07.046

    Article  CAS  PubMed  Google Scholar 

  71. Vu HT, Scarlett CJ, Vuong QV (2019) Changes of phytochemicals and antioxidant capacity of banana peel during the ripening process; with and without ethylene treatment. Sci Hort 253:255–262. https://doi.org/10.1016/j.scienta.2019.04.043

    Article  CAS  Google Scholar 

  72. Miazek K, Beton K, Śliwińska A, Brożek-Płuska B (2022) The Effect of β-Carotene, Tocopherols and ascorbic acid as Anti-oxidant molecules on Human and Animal in Vitro/In vivo studies: a review of Research Design and Analytical techniques used. Biomolecules 12:1087. https://doi.org/10.3390/biom12081087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stabnikova O, Stabnikov V, Paredes-López O (2024) Fruits of Wild-Grown Shrubs for Health Nutrition. Plant Foods Hum Nutr 79:20–37. https://doi.org/10.1007/s11130-024-01144-3

    Article  CAS  PubMed  Google Scholar 

  74. Kawata A, Murakami Y, Suzuki S, Fujisawa S (2018) Anti-inflammatory activity of β-carotene, lycopene and tri-n-butylborane, a scavenger of reactive oxygen species. vivo 32:255–264

    CAS  Google Scholar 

  75. Metibemu DS, Akinloye OA, Akamo AJ et al (2021) VEGFR-2 kinase domain inhibition as a scaffold for anti-angiogenesis: validation of the anti-angiogenic effects of carotenoids from Spondias mombin in DMBA model of breast carcinoma in Wistar rats. Toxicol Rep 8:489–498. https://doi.org/10.1016/j.toxrep.2021.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang Y, Zhu X, Huang T et al (2016) β-Carotene synergistically enhances the anti-tumor effect of 5-fluorouracil on esophageal squamous cell carcinoma in vivo and in vitro. Toxicol Lett 261:49–58. https://doi.org/10.1016/j.toxlet.2016.08.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Author JIVM thanks IPN and CONAHCYT (Mexico) for a study grant to pursue PhD research. Authors are grateful to IPN and CONAHCYT for financial support to carry out this work. Authors also thank Dr. Rosalva Mora-Escobedo for supporting the idea of publishing this article.

Funding

All authors received support from CONAHCYT (CB-242371) and Instituto Politécnico Nacional, Secretaría de Investigación y Posgrado (20240506), Mexico.

Author information

Authors and Affiliations

Authors

Contributions

J.I.V.M. Conceptualization, bibliographic investigation, writing; G.F.G.L. Conceptualization, bibliographic investigation, supervision, fundings; R.R.R.dT. Conceptualization, writing, editing, supervision; H.H.S. Conceptualization, bibliographic investigation; M.R.R.L. Conceptualization, writing, editing, supervision.

Corresponding author

Correspondence to Gustavo Fidel Guitiérrez-López.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdez-Miranda, J.I., Guitiérrez-López, G.F., Robles-de la Torre, R.R. et al. Health Benefits of High Voltage Electrostatic Field Processing of Fruits and Vegetables. Plant Foods Hum Nutr (2024). https://doi.org/10.1007/s11130-024-01190-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11130-024-01190-x

Keywords

Navigation