Skip to main content
Log in

In vitro Immunostimulant Activity of the Polyphenolic Extract from the Arctic Brown Algae Fucus vesiculosus

  • Research
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Polyphenols (PP) found in brown algae are known for their wide range of biological activities including noteworthy antitumor properties. This article presents a method for obtaining an active polyphenolic extract from the Arctic alga Fucus vesiculosus with 98% purity and radical scavenging activity equivalent to 862 mg of ascorbic acid per gram of extract. Immunostimulant effects of polyphenols were assessed in vitro using venous blood from two groups of people: healthy people (HP) and people with chronic undifferentiated lymphocytic leukemia (LP). Polyphenols activated the surface properties of immunocompetent cells. Specifically, polyphenols dose-dependently increased the percentage of cells’ spreading and adhesion by 2–3 times. Additionally, polyphenols increased the number of activated lymphocytes in the LP blood to levels characteristic of HP. Given their natural origin, high activity, non-toxicity, and straightforward production process, these studied polyphenols exhibit immense potential for use as new pharmaceuticals or as active components with immunostimulatory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Rajan DK, Mohan K, Zhang S, Ganesan AR (2021) Dieckol: a brown algal phlorotannin with biological potential. Biomed Pharmacother 142:111988. https://doi.org/10.1016/j.biopha.2021.111988

    Article  CAS  PubMed  Google Scholar 

  2. Bogolitsyn K, Druzhinina A, Kaplitsin P et al (2019) Relationship between radical scavenging activity and polymolecular properties of brown algae polyphenols. Chem Pap 73:2377–2385. https://doi.org/10.1007/s11696-019-00760-7

    Article  CAS  Google Scholar 

  3. Güner A, Nalbantsoy A, Sukatar A, Karabay Yavaşoğlu NÜ (2019) Apoptosis-inducing activities of Halopteris scoparia L. Sauvageau (brown algae) on cancer cells and its biosafety and antioxidant properties. Cytotechnology 71:687–704. https://doi.org/10.1007/s10616-019-00314-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Besednova NN, Andryukov BG, Zaporozhets TS et al (2020) Algae polyphenolic compounds and modern antibacterial strategies: current achievements and immediate prospects. Biomedicines 8:1–19. https://doi.org/10.3390/BIOMEDICINES8090342

    Article  Google Scholar 

  5. Dong X, Bai Y, Xu Z et al (2019) Phlorotannins from Undaria pinnatifida sporophyll: extraction, antioxidant, and anti-inflammatory activities. Mar Drugs 17:1–14. https://doi.org/10.3390/md17080434

    Article  CAS  Google Scholar 

  6. Mwangi HM, Njue WM, Onani MO et al (2017) Phlorotannins and a sterol isolated from a brown alga Ecklonia maxima, and their cytotoxic activity against selected cancer cell lines HeLa, H157 and MCF7. Interdiscip J Chem 2:1–6. https://doi.org/10.15761/ijc.1000120

    Article  Google Scholar 

  7. Maheswari V, Babu PAS (2022) Comprehensive reviews on phenolic compounds from phaeophyceae as potential therapeutic agent. J Appl Biol Biotechnol 10:14–21. https://doi.org/10.7324/JABB.2022.100502

    Article  CAS  Google Scholar 

  8. Besednova NN, Andryukov BG, Zaporozhets TS et al (2021) Antiviral effects of polyphenols from marine algae. Biomedicines 9:1–23. https://doi.org/10.3390/biomedicines9020200

    Article  CAS  Google Scholar 

  9. Bogolitsyn K, Dobrodeeva L, Parshina A, Samodova A (2021) In vitro and in vivo activities of polyphenol extracts from Arctic brown alga Fucus vesiculosus. J Appl Phycol 33:2597–2608. https://doi.org/10.1007/s10811-021-02450-y

    Article  CAS  Google Scholar 

  10. Zhao W, Subbiah V, Xie C et al (2023) Bioaccessibility and bioavailability of phenolic compounds in seaweed. Food Rev Int 39:5729–5760. https://doi.org/10.1080/87559129.2022.2094404

    Article  CAS  Google Scholar 

  11. Corona G, Ji Y, Anegboonlap P et al (2016) Gastrointestinal modifications and bioavailability of brown seaweed phlorotannins and effects on inflammatory markers. Br J Nutr 115:1240–1253. https://doi.org/10.1017/S0007114516000210

    Article  CAS  PubMed  Google Scholar 

  12. Kumar Y, Tarafdar A, Kumar D et al (2022) Polyphenols of edible macroalgae: estimation of in vitro bio-accessibility and cytotoxicity, quantification by LC-MS/MS and potential utilization as an antimicrobial and functional food ingredient. Antioxidants 11:993. https://doi.org/10.3390/antiox11050993

  13. Catarino MD, Amarante SJ, Mateus N et al (2021) Brown algae phlorotannins: a marine alternative to break the oxidative stress, inflammation and cancer network. Foods 10:1–27. https://doi.org/10.3390/foods10071478

    Article  CAS  Google Scholar 

  14. Boutjagualt I, Benbacer L, Hmimid F et al (2022) Chemical characterization, antiproliferative activity and molecular docking of bioactive compounds from brown algae Fucus spiralis. Algal Res 68:102887. https://doi.org/10.1016/j.algal.2022.102887

    Article  Google Scholar 

  15. Gao K, Zhang M, Li L et al (2023) Research hotspots and trends in discovery of anticancer agents from algae: a 20-year bibliometric and visualized analysis based on web of Science and CiteSpace. Algal Res 103244. https://doi.org/10.1016/j.algal.2023.103244

  16. Shrestha S, Zhang W, Smid SD (2021) Phlorotannins: a review on biosynthesis, chemistry and bioactivity. Food Biosci 39:100832. https://doi.org/10.1016/j.fbio.2020.100832

    Article  CAS  Google Scholar 

  17. Almeida TP, Ramos AA, Ferreira J et al (2019) Bioactive compounds from seaweed with anti-leukemic activity: a mini-review on carotenoids and phlorotannins. Mini-Reviews Med Chem 20:39–53. https://doi.org/10.2174/1389557519666190311095655

    Article  CAS  Google Scholar 

  18. Dahri M, Beheshtizadeh N, Seyedpour N et al (2023) Biomaterial-based delivery platforms for transdermal immunotherapy. Biomed Pharmacother 165:115048. https://doi.org/10.1016/j.biopha.2023.115048

    Article  CAS  PubMed  Google Scholar 

  19. Lin W-W, Karin M (2007) A cytokine-mediated link between innate immunity, inflmmation, and cancer. J Clin Invest 117:1175–1183. https://doi.org/10.1172/JCI31537.data

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma LL, Wang CLC, Neely GG et al (2004) NK cells use perforin rather than granulysin for anticryptococcal activity. J Immunol 173:3357–3365. https://doi.org/10.4049/jimmunol.173.5.3357

    Article  CAS  PubMed  Google Scholar 

  21. Wang R, Guo H, Tang X et al (2022) Interferon gamma-induced interferon regulatory factor 1 activates transcription of HHLA2 and induces immune escape of hepatocellular carcinoma cells. Inflammation 45:308–330. https://doi.org/10.1007/s10753-021-01547-3

    Article  CAS  PubMed  Google Scholar 

  22. Nesterova IV, Chudilova GA, Pavlenko VN, Tarakanov VA (2021) In vitro experimental rewiring of 4 neutrophilic granulocyte subsets from the pro-inflammatory to the anti-inflammatory phenotype in children with surgical purulent infection of soft tissue. Med Immunol 23:819–824. https://doi.org/10.15789/1563-0625-IVE-2311

    Article  Google Scholar 

  23. Yang M, Giehl E, Feng C et al (2021) IL-36γ-armed oncolytic virus exerts superior efficacy through induction of potent adaptive antitumor immunity. Cancer Immunol Immunother 70:2467–2481. https://doi.org/10.1007/s00262-021-02860-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gill CM, D’Andrea MR, Tomita S et al (2021) Tumor immune microenvironment in brain metastases from gynecologic malignancies. Cancer Immunol Immunother 70:2951–2960. https://doi.org/10.1007/s00262-021-02909-4

    Article  CAS  PubMed  Google Scholar 

  25. Khazen R, Cazaux M, Lemaître F et al (2021) Functional heterogeneity of cytotoxic T cells and tumor resistance to cytotoxic hits limit anti-tumor activity in vivo. EMBO J 40:1–13. https://doi.org/10.15252/embj.2020106658

    Article  CAS  Google Scholar 

  26. Koucký V, Hladíková K, Táborská E et al (2021) The cytokine milieu compromises functional capacity of tumor-infiltrating plasmacytoid dendritic cells in HPV-negative but not in HPV-positive HNSCC. Cancer Immunol Immunother 70:2545–2557. https://doi.org/10.1007/s00262-021-02874-y

    Article  CAS  PubMed  Google Scholar 

  27. Erpel F, Mateos R, Pérez-Jiménez J, Pérez-Correa JR (2020) Phlorotannins: from isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Res Int 137:1–16. https://doi.org/10.1016/j.foodres.2020.109589

    Article  CAS  Google Scholar 

  28. Zhang MY, Guo J, Hu XM et al (2019) An in vivo anti-tumor effect of eckol from marine brown algae by improving the immune response. Food Funct 10:4361–4371. https://doi.org/10.1039/c9fo00865a

    Article  CAS  PubMed  Google Scholar 

  29. Park C, Cha HJ, Hong SH et al (2019) Protective effect of phloroglucinol on oxidative stress-induced DNA damage and apoptosis through activation of the Nrf2/HO-1 signaling pathway in HaCaT human keratinocytes. Mar Drugs 17:225. https://doi.org/10.3390/md17040225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou X, Yang G, Guan F (2020) Biological functions and analytical strategies of sialic acids in tumor. Cells 9:1–17. https://doi.org/10.3390/cells9020273

    Article  CAS  Google Scholar 

  31. Lu J, Marjon KD, Mold C et al (2012) Pentraxins and fc receptors. Immunol Rev 250:230–238

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kopp A, Strobel S, Tortajada A et al (2012) Atypical hemolytic uremic syndrome-associated variants and autoantibodies impair binding of factor H and factor H-related protein 1 to pentraxin 3. J Immunol 189:1858–1867. https://doi.org/10.4049/jimmunol.1200357

    Article  CAS  PubMed  Google Scholar 

  33. Dobrodeeva LK, Samodova AV (2023) Adhesive activity of peripheral venous blood leukocytes under in vitro conditions in patients with malignant neoplasms. Vopr Onkol 69:665–675. https://doi.org/10.37469/0507-3758-2023-69-4-665-675

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education, project No. FSRU-2023-004.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: K.B., L.D.; Methodology: L.D., A.S.; Formal analysis and investigation: L.D., A.S., A.P.; Writing - original draft preparation: A.P.; Writing - review and editing: L.D., K.B.; Supervision: K.B.

Corresponding author

Correspondence to Anastasia Parshina.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human Ethics and Consent to Participate Declaration

All experiments were conducted in accordance with the World Medical Association Declaration of Helsinki – Ethical principles for medical research involving human subjects (2013). The studies were approved by the Biomedical Ethics Commission at the N.P. Laverov FCIAR of the Ural Branch of the Russian Academy of Sciences (protocol No. 8, 30 March, 2022). Informed consent was obtained from all individual participants (volunteers) included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogolitsyn, K., Dobrodeeva, L., Samodova, A. et al. In vitro Immunostimulant Activity of the Polyphenolic Extract from the Arctic Brown Algae Fucus vesiculosus. Plant Foods Hum Nutr (2024). https://doi.org/10.1007/s11130-024-01174-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11130-024-01174-x

Keywords

Navigation