Skip to main content
Log in

Kombucha as a Health-Beneficial Drink for Human Health

  • Review
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Kombucha is a unique fermented beverage made from a symbiotic culture of yeast and bacteria. Kombucha is normally based on black tea added to water, then sugar is added as a substrate for fermentation in this beverage. This unique beverage is composed of amino acids, flavonoids, vitamins, and some active enzymes. Several beneficial health effects such as antioxidant, antimicrobial effects have been reported as a result of probiotics and prebiotics presence. These health effects of kombucha are attributed to its bioactive chemical and biological agents of probiotics bacteria e.g., Gluconobacter, Acetobacter and yeasts like Saccharomyces sps., along with glucuronic acid as the main sources of the health protection. This review focuses on the beneficial effects of Kombucha including antimicrobial, antioxidant, anti-cancer antidiabetic properties, as well as liver protection, treat of gastrointestinal problems, AIDS, gastric ulcers, obesity (and energy production), detoxification, and skin health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Coelho RM, Almeida AL, Amaral RQ, Mota R, Sousa PH (2020) Kombucha: review. Int J Gastronom Food Sci 22:10–22. https://doi.org/10.1016/jijgfs2020100272

    Article  Google Scholar 

  2. Bishop P, Pitts ER, Budner D, Thompson-Witrick KA (2022) Kombucha: biochemical and microbiological impacts on the chemical and flavor profile. Food Chem Advanc 12:25–32. https://doi.org/10.1016/j.focha.2022.100025

    Article  Google Scholar 

  3. Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P (2018) Understanding kombucha tea fermentation: a review. J Food Sci 83(3). https://doi.org/10.1111/1750.384114068

  4. Leal JM, Suárez LV, Jayabalan R, Oros JH, Escalante-Aburto A (2018) A review on health benefits of kombucha nutritional compounds and metabolites. CyTA J Food 16(1):390–399. https://doi.org/10.1080/1947633720171410499

    Article  Google Scholar 

  5. Ivanišová E, Meňhartová K, Terentjeva M (2020) The evaluation of chemical antioxidant antimicrobial and sensory properties of kombucha tea beverage. J Food Sci Technol 57:1840–1846. https://doi.org/10.1007/s13197-019-04217-3

  6. Laureys D, Britton SJ, De Clippeleer J (2020) Kombucha tea fermentation: a review. J Am Soc Brew Chem 78:30–35. https://doi.org/10.1080/03610470.2020.1734150

    Article  CAS  Google Scholar 

  7. Macedo R, De Aryelle DC, De Almeida L, Do Amaral RQ, Da Mota RN, De Sousa PHM (2020) Kombucha: review. Int J Gastro Food Sci 22:12–25. https://doi.org/10.1016/jijgfs2020100272

  8. Tran T, Grandvalet C, Verdier F, Martin A, Alexandre H, Tourdot-Marechal R (2020) Microbiological and technological parameters impacting the chemical composition and sensory quality of kombucha. Compr Rev Food Safe 19:2050–2070. https://doi.org/10.1111/1541-4337.12574

    Article  CAS  Google Scholar 

  9. La Torre C, Fazio A, Caputo P, Plastina P, Caroleo MC, Cannataro R, Cione E (2021) Effects of long-term storage on radical scavenging properties and phenolic content of kombucha from black tea. Molecules 26(18):54–74. https://doi.org/10.3390/molecules26185474

    Article  CAS  Google Scholar 

  10. Abaci N, Deniz FSS, Orhan IE (2022) Kombucha–an ancient fermented beverage with desired bioactivities: a narrowed review. Food Chem 14:10–32. https://doi.org/10.1016/j.fochx.2022.100302

    Article  CAS  Google Scholar 

  11. Candra A, Prasetyo BE, Tarigan JB (2021) Study of vitamin C level of soursop leaves (Annona muricata L) and galactomannan utilization in kombucha during fermentation AIP Conference Proceedings 2342 Article 100007 https://doi.org/10.1063/50045669

  12. Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P (2019) Understanding the kombucha tea fermentation: a review. J Food Sci 83:508–588. https://doi.org/10.1111/1750-384114068

  13. Massoud R, Jafari R, Naghavi N, Khosravi-Darani K (2021) All aspects of antioxidant properties of kombucha drink. Biointer Res Appl Chem 12:4021–4027. https://doi.org/10.33263/BRIAC123.40184027

    Article  Google Scholar 

  14. Beigmohammadi F, Karbasi A, Beigmohammadi Z (2021) Production of high glucuronic acid level in kombucha beverage under the influence environmental condition. J Food Technol Nutr 7:30–38

    Google Scholar 

  15. Shamsaie P, Hosseini SE, Asadi G (2023) Production and characterization of a novel symbiotic plant-based beverage rich in antioxidant phenolic: mung bean and rye sprouts. Plant Foods Hum Nutr 78:584–589. https://doi.org/10.1007/s11130-023-01093-3

    Article  CAS  PubMed  Google Scholar 

  16. Yang J, Lagishetty V, Kurnia P, Henning SM, Ahdoot AI, Jacobs JP (2022) Microbial and chemical profiles of commercial kombucha products. Nutrients 14(3):670–677. https://doi.org/10.3390/nu14030670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vitas J, Malbaša R, Vukmanović S (2022) Volatile compounds formation in kombucha. In: Volatile compounds formation in specialty beverages. CRC. 185–207

  18. Lobo RO, Dias F, Shenoy CK (2017) Kombucha for healthy living evaluation of antioxidant potential and bioactive compounds. Int Food Res J 24(2):541–546

    CAS  Google Scholar 

  19. Gamboa-Gomez C, Gonzalez-Laredo R, Gallegos-Infante J, Perez M, Martha R, Moreno-Jimenez MR, Flores-Rueda AG, Rocha-Guzman NE (2016) Antioxidant and angiotensin-converting enzyme inhibitory activity of eucalyptus camaldulensis and litsea glaucescens infusions fermented with kombucha consortium. Food Technol 54(3):367–374. https://doi.org/10.17113/ftb.54.03.16.4622

    Article  Google Scholar 

  20. Ahmed RF, Hikal MS, Abou-Taleb KA (2020) Biological chemical and antioxidant activities of different types kombucha. Ann Agric Sci 65(1): 35–41. https://doi.org/10.1016/jaoas202004001

  21. Landis EA, Fogarty E, Edwards JC, Popa O, Eren AM, Wolfe BE (2022) Microbial diversity and interaction specificity in kombucha tea fermentations. Msystems 7(3):157–122. https://doi.org/10.1128/msystems.00157-22

    Article  CAS  Google Scholar 

  22. Vohra BM, Fazry S, Sairi F (2019) Effects of medium variation and fermentation time on the antioxidant and antimicrobial properties of kombucha. Mala J Fund Appl Sci 22:298–302

    Article  Google Scholar 

  23. Dufresne C, Farnworth E (2000) Tea kombucha and health: a review. Food Res 33(6):409–421. https://doi.org/10.1016/S0963-9969(00)00067-3

    Article  CAS  Google Scholar 

  24. Jayabalan R, Malini K, Sathishkumar M, Swaminathan K, Yun SE (2010) Biochemical characteristics of tea fungus producted during kombucha fermentation. Food Sci Biotechnol 19(3):843–847. https://doi.org/10.1007/s10068-010-0119-6

    Article  CAS  Google Scholar 

  25. Darvishzadeh P, Orsat V, Faucher SP (2021) Encapsulation of Russian olive water kefir as an innovative functional drink with high antioxidant activity. Plant Foods Hum Nutr 76:161–169. https://doi.org/10.1007/s11130-021-00886-8

    Article  CAS  PubMed  Google Scholar 

  26. Gramza-Michałowska A, Kulczyński B, Xindi Y, Gumienna M (2019) Research on the effect of culture time on the kombucha tea beverage’s antiradical capacity and sensory value. Acta Sci Pol Technol Aliment 15(4):447–457. https://doi.org/10.17306/J.AFS.2016.4.43

    Article  Google Scholar 

  27. Malbasa R, Vitas J, Loncar E, Grahovac J, Milanovic S (2014) Optimisation of the antioxidant activity of kombucha fermented milk products. Czech J Food Sci 32(5):477–484. https://doi.org/10.17221/447/2013-CJFS

    Article  Google Scholar 

  28. Aung T, Eun JB (2022) Impact of time and temperature on the physicochemical microbiological and nutraceutical properties of laver kombucha (Porphyra dentata) during fermentation. LWT-Food Sci Technol 154:11–26. https://doi.org/10.1016/j.lwt.2021.112643

    Article  CAS  Google Scholar 

  29. Fu C, Yan F, Cao Z, Xie F, Lin J (2014) Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Sci Technol 34(1):123–126. https://doi.org/10.1590/S0101-20612014005000012

    Article  Google Scholar 

  30. Greenwalt CJ, Steinkraus KH, Ledford RA (2000) Kombucha the fermented tea: microbiology composition and claimed health effects. J Food Prot 63(7):976–981. https://doi.org/10.4315/0362-028X-63.7.976

    Article  CAS  PubMed  Google Scholar 

  31. Sreeramulu G, Zhu Y, Knol W (2000) Kombucha fermentation and its antimicrobial activity. J Agric Food Chem 48(6):2589–2594. https://doi.org/10.1021/jf991333m

    Article  CAS  Google Scholar 

  32. Li R, Xu Y, Chen J, Wang F, Zou C, Yin J (2022) Enhancing the proportion of gluconic acid with a microbial community reconstruction method to improve the taste quality of Kombucha. LWT 155:112937. https://doi.org/10.1016/j.lwt.2021.112937

    Article  CAS  Google Scholar 

  33. Deghrigue M, Chriaa J, Battikh H, Abid K, Bakhrouf A (2013) Antiproliferative and antimicrobial activities of kombucha tea. Afr J Microb Res 7:3466–3470. http://www.academicjournals.org/ajmr/

    Google Scholar 

  34. Battikh H, Bakhrouf A, Ammar E (2012) Antimicrobial effect of kombucha analogues. Food Sci Technol 47:71–77. https://doi.org/10.1016/j.lwt.2011.12.033

    Article  CAS  Google Scholar 

  35. Andreson M, Kazantseva J, Kuldjärv R, Malv E, Vaikma H, Kaleda A, Kütt ML, Vilu R (2022) Characterisation of chemical microbial and sensory profiles of commercial kombuchas. Int J Food Microbiol 373:109715. https://doi.org/10.1016/j.ijfoodmicro.2022.109715

    Article  CAS  PubMed  Google Scholar 

  36. Harrison K, Curtin C (2021) Microbial composition of SCOBY starter cultures used by commercial kombucha. Brewers North Am Microorg 9:106–112. https://doi.org/10.3390/MICROORGANISMS9051060

    Article  Google Scholar 

  37. Arıkan M, Mitchell AL, Finn RD, Gürel F (2020) Microbial composition of kombucha determined using amplicon sequencing and shotgun metagenomics. J Food Sci 85:455–464. https://doi.org/10.1111/1750-384114992

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kozyrovska NO, Reva OM, Goginyan VB, DeVera J (2012) Kombucha microbiome as a probiotic: a view from the perspective of post-genomics and synthetic ecology. Biopol Cell 28(2):103–113. https://doi.org/10.7124/bc.000034

    Article  Google Scholar 

  39. Caili FU, Yan F, Cao Z, Xie F, Lin J (2014) Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Sci Technol 34(1):123–126. https://doi.org/10.1590/S0101-20612014005000012

    Article  Google Scholar 

  40. Sengun I, Kirmizigul (2020) A probiotic potential of kombucha. J Clin Gastroenterol 54:28–33. https://doi.org/10.1016/j.jff.2020.104284

    Article  CAS  Google Scholar 

  41. Vargas BK, Fabricio MF, Ayub MAZ (2021) Health effects and probiotic and prebiotic potential of kombucha: a bibliometric and systematic review. Food Biosci 44:10–32. https://doi.org/10.1016/j.fbio.2021.101332

    Article  CAS  Google Scholar 

  42. Lemos Junior WJF, Treu L, Duarte VDS, Campanaro S, Nadai C, Giacomini A, Corich V (2017) Draft genome sequence of the yeast Starmerella bacillaris (syn Candida zemplinina) FRI751 isolated from fermenting must have dried Raboso grapes. Genome Announc 5:00224–00217. https://doi.org/10.1128/genomeA.00224-17

  43. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB (2014) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nut Res Rev 17:259–275. https://doi.org/10.1079/NRR200479

    Article  CAS  Google Scholar 

  44. Bindels LB, Delzenne NM, Cani PD, Walter J (2015) Towards a more comprehensive concept for prebiotics. Natur Rev Gastroen Hepat 12:303–310. https://doi.org/10.1038/nrgastro.2015.47

    Article  CAS  Google Scholar 

  45. Jayabalan R, Malbasa R, Sathishkumar M (2016) Kombucha. Ref mod Food Sci 20–25. https://doi.org/10.1016/B978-0-08-100596-503032-8

  46. Kim J, Adhikari K (2020) Current trends in kombucha: marketing perspectives and the need for improved sensory research Beverages 6(1):15–25. https://www.mdpicom/2306-5710/6/1/15

  47. Kaewkod T, Bovonsombut S, Tragoolpua Y (2019) Efficacy of kombucha obtained from green oolong and black teas on inhibition of pathogenic bacteria antioxidation and toxicity on colorectal cancer cell line. Microorganisms 7:70–77. https://doi.org/10.3390/microorganisms7120700

    Article  CAS  Google Scholar 

  48. Jafari R, Naghavi NS, Khosravi-Darani K, Doudi M, Shahanipor K (2016) Kombucha microbial starter with enhanced production of antioxidant compounds and invertase. Biocat Agr Biotech 10:78–95. https://doi.org/10.1016/j.bcab.2020.101789

    Article  Google Scholar 

  49. Kumar KS, Sastry N, Polaki H, Mishra V (2016) Colon cancer prevention through probiotics: an overview. J Cancer Sci Th 7:81–92. https://doi.org/10.4172/1948-5956.1000329

    Article  CAS  Google Scholar 

  50. Rasouli L, Aryaeian N, Gorjian M, Nourbakhsh M, Amiri F (2021) Evaluation of cytotoxicity and anticancer activity of kombucha and doxorubicin combination therapy on colorectal cancer cell line HCT-116. J Ed Health Promot 10:37–45. https://doi.org/10.4103/jehpjehp_1456_20

    Article  Google Scholar 

  51. Nguyen NK, Dong NTN, Le PH, Nguyen HT (2014) Evaluation of the glucuronic acid production and other biological activities of fermented sweeten- black tea by kombucha layer and the co-culture with different Lactobacillus sp strains. Int J Mod Engine Res 4(5):12–17

    Google Scholar 

  52. Srihari T, Satyanarayana U (2012) Changes in free radical scavenging activity of kombucha during fermentation. J Pharm Sci Res 4(11):1978–1981

    CAS  Google Scholar 

  53. Adewusi EA, Afolayan AJ (2010) A review of natural products with hepatoprotective activity. J Med Plants Res 4(13):1318–1334. https://doi.org/10.5897/JMPR09.472

    Article  Google Scholar 

  54. Abshenas J, Derakhshanfar A, Ferdosi MH, Hasanzadeh S (2012) Protective effect of kombucha tea against acetaminophen-induced hepatotoxicity in mice: a biochemical and histopathological study. Comp Clin Path 21(6):1243–1248. https://doi.org/10.1007/s00580-011-1273-9

    Article  Google Scholar 

  55. Wang Y, Ji B, Wu W (2014) Hepatoprotective effects of kombucha tea: identification of functional strains and quantification of functional components. J Sci Food Agric 94(2):265–272. https://doi.org/10.1002/jsfa.6245

    Article  CAS  Google Scholar 

  56. Kabiri N, Setorki M, Darabi MA (2013) Protective effects of kombucha tea and silimarin against thioacetamide induced hepatic injuries in Wistar rats. World Appl Sci J 27(4):524–532. http://www.idosi.org/./18

    Google Scholar 

  57. Jeon TI, Hwang SG, Park NG (2003) Antioxidative effect of chitosan on chronic carbon tetrachloride induced hepatic injury in rats. Toxicology 187(1):67–73. https://doi.org/10.1016/S0300-483X(03)00003-9

    Article  CAS  PubMed  Google Scholar 

  58. Murugesan GS, Sathishkumar M, Jayabalan R, Binupriya AR, Swaminathan K, Yun SE (2009) Hepatoprotective and curative properties of kombucha tea against carbon tetrachloride-induced toxicity. J Microb Biotech 19(4):397–402

    Article  CAS  Google Scholar 

  59. Hyun J, Lee Y, Wang S, Kim J, Kim J, Cha J, Seo YS, Jung Y (2019) Kombucha tea prevents obese mice from developing hepatic steatosis and liver damage. Food Sci Biotechnol 25:861–866. https://doi.org/10.1007/s10068-016-0142-3

    Article  CAS  Google Scholar 

  60. Xu S, Wang Y, Wang J, Geng W (2022) Kombucha reduces hyperglycemia in type 2 diabetes of mice by regulating gut microbiota and its metabolites. Foods 11(5):754. https://doi.org/10.3390/foods11050754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kitwetcharoen H, Phung LT, Klanrit P, Thanonkeo S, Tippayawat P, Yamada M, Thanonkeo P (2023) Kombucha healthy drink—recent advances in production chemical composition and health benefits, Fermentation 9(1):48–55. https://doi.org/10.3390/fermentation9010048

  62. Jung Y, Kim I, Mannaa M (2019) Effect of Kombucha on gut-microbiota in mouse having non-alcoholic fatty liver disease. Food Sci Biotechnol 28:261–267. https://doi.org/10.1007/s10068-018-0433-y

    Article  CAS  PubMed  Google Scholar 

  63. Ragab G, Elshahaly M, Bardin T (2019) Gout: an old disease in new perspective–a review. J Adv Res 8(5):495–511. https://doi.org/10.1016/j.jare.2017.04.008

    Article  CAS  Google Scholar 

  64. El Ridi R, Tallima H (2012) Physiological functions and pathogenic potential of uric acid: a review. J Adv Res 8(5):487–493. https://doi.org/10.1016/j.jare.2017.03.003

    Article  CAS  Google Scholar 

  65. Oliveira JT, da Costa FM, da Silva TG, Simões GD, dos Santos Pereira E, da Costa PQ, Andreazza R, Schenkel PC, Pieniz S (2023) Green tea and kombucha characterization: phenolic composition antioxidant capacity and enzymatic inhibition potential. Food Chem 408:13–22. https://doi.org/10.1016/jfoodchem2022135206

    Google Scholar 

  66. Vancampfort D, Mugisha J, Richards J, De Hert M, Probst M, Stubbs B (2018) Physical activity correlates in people living with HIV/AIDS: a systematic review of 45. Stud Disabil Rehabil 40:1618–1629. https://doi.org/10.1080/0963828820171306587

    Article  Google Scholar 

  67. Kapp JM, Sumner W (2019) Kombucha: a systematic review of the empirical evidence of human health benefit. Annal Epidem 30:66–70. https://doi.org/10.1016/j.annepidem.2018.11.001

    Article  Google Scholar 

  68. He B, Tran JT, Sanchez DJ (2019) Manipulation of type I interferon signaling by HIV and AIDS-associated viruses. J Immun Res 12:22–32. https://doi.org/10.1155/2019/8685312

    Google Scholar 

  69. Hua S, Vigano S, Tse S, Zhengyu O (2018) Pegylated interferon-α–induced natural killer cell activation is associated with human immunodeficiency virus-1 DNA decline in antiretroviral therapy–treated HIV. Clinic Infec Dis 66:1910–1917. https://doi.org/10.1093/cid/cix1111

  70. Kole ASH, Jones HD (2009) A case of kombucha tea toxicity J Intens Care Med 24:3–12. https://doi.org/10.1177/0885066609332963

  71. Değirmencioğlu N, Yildiz E, Guldas M, Gurbuz O (2020) Health benefits of kombucha tea. J Obes Chronic Dis 4(1):1–5. https://doi.org/10.1016/j.annepidem.2018.11.001

    Article  Google Scholar 

  72. Jayabalan R, Malbaśa RV (2017) Kombucha Tea: metabolites Fung metabol. 12:2–5. https://doi.org/10.1039/D1FO01839F

  73. Villarreal-Soto SA, Beaufort S, Bouajila J (2018) Understanding kombucha tea fermentation: a review. J Food Sci 83:3–10. https://doi.org/10.1111/1750-3841.14068

    Article  CAS  Google Scholar 

  74. Mohiuddin AK (2019) Skin aging & modern age anti-aging strategies skin. PharmaTutor 11:5–10. https://doi.org/10.29161/PT.v7.i8.2019.22

    Article  Google Scholar 

  75. Pakravan N, Mahmoudi E, Hashemi SA, Kamali J, Hajiaghayi R, Rahimzadeh M, Mahmoodi V (2018) Cosmeceutical effect of ethyl acetate fraction of Kombucha tea by intradermal administration in the skin of aged mice. J Cosmet Dermatol 17(6):1216–1224. https://doi.org/10.1111/jocd12453

    Article  Google Scholar 

  76. Domaszewska-Szostek A, Puzianowska-Kuznicka M, Kurylowicz A (2021) Flavonoids in skin senescence prevention and treatment. Int J Mol Sci 22(13):6814. https://doi.org/10.3390/ijms22136814

    Article  CAS  Google Scholar 

  77. Rattanawiwatpong P, Wanitphakdeedecha R, Bumrungpert A, Maiprasert M (2020) Anti-aging and brightening effects of a topical treatment containing vitamin C vitamin E and raspberry leaf cell culture extract: a split-face randomized controlled trial. J Cosmet Dermatol 19(3):671–676. https://doi.org/10.1111/jocd13305

    Article  Google Scholar 

  78. Shi S, Wei Y, Lin X, Liang H, Zhang S, Chen Y, Ji C (2023) Microbial metabolic transformation and antioxidant activity evaluation of polyphenols in kombucha. Food Biosci 51:102287. https://doi.org/10.1016/j.fbio.2022.102287

    Article  CAS  Google Scholar 

  79. Pakravan N, Mahmoudi E, Hashemi SA (2018) Cosmeceutical effect of ethyl acetate fraction of Kombucha tea by intradermal administration in the skin of aged mice. J Cosmet Dermatol 25:15–22. https://doi.org/10.1111/jocd.12453

    Article  Google Scholar 

  80. Chakravorty S, Bhattacharya S, Bhattacharya D (2019) Kombucha: a promising functional beverage prepared from tea. Non-Alcohol Bev 285–327. https://doi.org/10.1016/B978-0-12-815270-6.00010-4

  81. Amarasinghe H, Weerakkody NS, Waisundara VY (2018) Evaluation of physicochemical properties and antioxidant activities of kombucha “tea fungus” during extended period of fermentation. Food Sci Nut J 6:659–665. https://doi.org/10.1002/fsn3.605

  82. Annuzzi G, Bozzett L, Costabile G, Giacco R, Mangione A (2014) Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: a randomized controlled trial. J Clinic Nut 99:463–471. https://doi.org/10.3945/ajcn.113.073445

  83. Watawana MI, Jayawardena N (2015) Health wellness and safety aspects of the consumption of kombucha. J Chem 20:22–28. https://doi.org/10.1155/2015/591869

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

R.J and K.K.D main idea, writing draft, R.M: edition, prepared the Figure. R.M and K.K.D reviewed the manuscript. All authors shared in Software.

Corresponding author

Correspondence to Kianoush Khosravi-Darani.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massoud, R., Jafari, R. & Khosravi-Darani, K. Kombucha as a Health-Beneficial Drink for Human Health. Plant Foods Hum Nutr (2024). https://doi.org/10.1007/s11130-024-01169-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11130-024-01169-8

Keywords

Navigation