Skip to main content
Log in

Antioxidant Peptides Derived from Millet Bran Promote Longevity and Stress Resistance in Caenorhabditis elegans

  • Research
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Millet bran as a by-product of millet grain processing remains a reservoir of active substances. In this study, functional millet bran peptides (MBPE) were obtained from bran proteins after alcalase hydrolysis and ultrafiltration. The activity of MBPE was assessed in vitro and in the model organism Caenorhabditis elegans (C. elegans). In vitro, compared to unhydrolyzed proteins, MBPE significantly enhanced the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2’-Azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS) and hydroxyl radicals scavenging activity, and the scavenging rate of MBPE with 15,000 U/g alcalase reached 42.79 ± 0.31%, 61.38 ± 0.41 and 45.69 ± 0.84%, respectively. In C. elegans, MBPE at 12.5 µg/mL significantly prolonged the lifespan by reducing lipid oxidation, oxidative stress, and lipofuscin levels. Furthermore, MBPE increased the activities of the antioxidant enzymes. Genetic analyses showed that MBPE-mediated longevity was due to a significant increase in the expression of daf-16 and skn-1, which are also involved in xenobiotic and oxidative stress responses. In conclusion, this study found that MBPE had antioxidant and life-prolonging effects, which are important for the development and utilization of millet bran proteins as resources of active ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets used in the current study are available from the corresponding author on reasonable request.

References

  1. Kropf E, Fahnestock M (2021) Effect of reactive oxygen and nitrogen species on TrkA expression and signalling: implications for proNGF in aging and Alzheimer’s disease. Cells 10(8):1983. https://doi.org/10.3390/cells1081983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Polidori MC, Mecocci P (2022) Modeling the dynamics of energy imbalance: the free radical theory of aging and frailty revisited. Free Radic Bio Med 181:235–240. https://doi.org/10.1016/j.freeradbiomed.2022.02.009

    Article  CAS  Google Scholar 

  3. Moser MA, Chun OK (2016) Vitamin C and heart health: a review based on findings from epidemiologic studies. Int J Mol Sci 17(8):1328. https://doi.org/10.3390/ijms17081328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hughes J (1975) Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res 88(2):295–308. https://doi.org/10.1016/0006-8993(75)90391-1

    Article  CAS  PubMed  Google Scholar 

  5. Liu YQ, Strappe P, Shang WT et al (2019) Functional peptides derived from rice bran proteins. Crit Rev Food Sci Nutr 59(2):349–356. https://doi.org/10.1080/10408398.2017.1374923

    Article  CAS  PubMed  Google Scholar 

  6. Elias RJ, Kellerby SS, Decker EA (2008) Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr 48(5):430–441. https://doi.org/10.1080/10408390701425615

    Article  CAS  PubMed  Google Scholar 

  7. Zhu Y, Lao F, Pan X et al (2022) Food protein-derived antioxidant peptides: molecular mechanism, stability and bioavailability. Biomolecules 12(11):1622. https://doi.org/10.3390/biom12111622

  8. Xiao Z, Du X, Tang J et al (2017) Research progress on development and utilization of millet bran. Cereal Food Ind 24(2):15–18. https://doi.org/10.3969/j.issn.1672-5026.2017.02.004

    Article  Google Scholar 

  9. Dong J, Wang L, Lv J et al (2019) Structural, antioxidant and adsorption properties of dietary fiber from foxtail millet (Setaria italica) bran. J Sci Food Agric 99(8):3886–3894. https://doi.org/10.1002/jsfa.9611

    Article  CAS  PubMed  Google Scholar 

  10. Li M, Chang L, Ren J et al (2022) Nutritional, physical, functional properties and antioxidant potential of different colors proso millet husks and brans. LWT- Food Sci Technol 171:114092. https://doi.org/10.1016/j.lwt.2022.114092

    Article  CAS  Google Scholar 

  11. He r et al (2022) liu m, zou z Anti-inflammatory activity of peptides derived from millet bran in vitro and in vivo. Food Funct 13:1881 https://doi.org/10.1039/D1FO03711K

  12. Shen P, Yue Y, Park Y (2018) A living model for obesity and aging research: Caenorhabditis elegans. Crit Rev Food Sci Nutr 58(5):741–754. https://doi.org/10.1080/10408398.2016.1220914

    Article  PubMed  Google Scholar 

  13. Zhang Y, He S, Bonneil É et al (2020) Generation of antioxidative peptides from Atlantic sea cucumber using alcalase versus trypsin: in vitro activity, de novo sequencing, and in silico docking for in vivo function prediction. Food Chem 306:125581. https://doi.org/10.1016/j.foodchem.2019.125581

    Article  CAS  PubMed  Google Scholar 

  14. Shi H, Hu X, Zheng H et al (2021) Two novel antioxidant peptides derived from Arca subcrenata against oxidative stress and extend lifespan in Caenorhabditis elegans. J Funct Foods 81:104462. https://doi.org/10.1016/j.jff.2021.104462

    Article  CAS  Google Scholar 

  15. Shen N, Zeng W, Leng F et al (2021) Ginkgo seed extract promotes longevity and stress resistance of Caenorhabditis elegans. Food Funct 12:12395–12406. https://doi.org/10.1039/D1FO02823E

    Article  CAS  PubMed  Google Scholar 

  16. Duangjan C, Rangsinth P, Gu X et al (2019) Glochidion zeylanicum leaf extracts exhibit lifespan extending and oxidative stress resistance properties in Caenorhabditis elegans via DAF-16/FoxO and SKN-1/Nrf-2 signaling pathways. Phytomedicine 64:153061. https://doi.org/10.1016/j.phymed.2019.153061

    Article  CAS  PubMed  Google Scholar 

  17. Zhang J, Chen R, Yu Z et al (2017) Superoxide dismutase (SOD) and catalase (CAT) activity assay protocols for Caenorhabditis elegans. Bio Protoc 7(16):e2505. https://doi.org/10.21769/bioprotoc.2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caito SW, Aschner M (2015) Quantification of glutathione in Caenorhabditis elegans. Curr Protoc Toxicol 64(618):1–6. https://doi.org/10.1002/0471140856.tx0618s64

    Article  Google Scholar 

  19. Wang L, Xiao Mf C, Hp et al (2022) Antioxidant activity of OE-I from Oyster polypeptide and its anti-aging effect on Caenorhabditis elegans. J Food Sci 43(03):152–160. https://doi.org/10.7506/spkx1002-6630-20210201-016

    Article  CAS  Google Scholar 

  20. Jiang S, Deng N, Zheng B et al (2021) Rhodiola extract promotes longevity and stress resistance of Caenorhabditis elegans via DAF-16 and SKN-1. Food Funct 12(10):4471–4483. https://doi.org/10.1039/D0FO02974B

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Deng N, Wang H et al (2020) Effects of orange extracts on longevity, healthspan, and stress resistance in Caenorhabditis elegans. Molecules 25(2):351. https://doi.org/10.3390/molecules25020351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu X, Su Q, Shen T et al (2020) Antioxidant peptides from Sepia esculenta hydrolyzate attenuate oxidative stress and fat accumulation in Caenorhabditis elegans. Mar Drugs 18(10):490. https://doi.org/10.3390/md18100490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ruangchuay S, Wang QQ, Wang LY et al (2021) Antioxidant and antiaging effect of traditional thai rejuvenation medicines in Caenorhabditis elegans. J Integr Med 19(4):362–373. https://doi.org/10.1016/j.joim.2021.03.004

    Article  PubMed  Google Scholar 

  24. Jiang S, Jiang CP, Cao P et al (2022) Sonneradon A extends lifespan of Caenorhabditis elegans by modulating mitochondrial and IIS signaling pathways. Mar Drugs 20(1):59. https://doi.org/10.3390/md20010059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kenyon C, Chang J, Gensch E et al (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464. https://doi.org/10.1038/366461a0

    Article  CAS  PubMed  Google Scholar 

  26. Zhang YP, Zhang WH, Zhang P et al (2022) Intestin-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost. Nat Commun 13:6339. https://doi.org/10.1038/s41467-022-33850-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boasquívis PF, Silva GMM, Paiva FA et al (2018) Guarana (Paullinia cupana) extract protects Caenorhabditis elegans models for Alzheimer disease and Huntington disease through activation of antioxidant and protein degradation pathways. Oxid Med Cell Longev 2018:9241308 https://doi.org/10.1155/2018/9241308

Download references

Funding

This work was supported by the Basic Research Program of Shanxi Province (202203021221015), the Shanxi Scholarship Council of China (2020-015) and the Xinghuacun College of Shanxi University (XCSXU-KF-202215).

Author information

Authors and Affiliations

Authors

Contributions

Chen Li: conceptualization, methodology, investigation, writing – original draft and funding acquisition. Wenjing Xu and Xiangyu Zhang: investigation, data curation and writing – original draft. Xiaodong Cui: investigation and methodology. Apollinaire Tsopmo: writing – review & editing. Jiao Li: conceptualization, writing – review & editing, project administration, and supervision.

Corresponding authors

Correspondence to Chen Li or Jiao Li.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare they have no conflicts of interest to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Xu, W., Zhang, X. et al. Antioxidant Peptides Derived from Millet Bran Promote Longevity and Stress Resistance in Caenorhabditis elegans. Plant Foods Hum Nutr 78, 790–795 (2023). https://doi.org/10.1007/s11130-023-01100-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-023-01100-7

Keywords

Navigation