Skip to main content

Advertisement

Log in

Bitter Peptides in Fermented Soybean Foods - A Review

  • Review
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Fermented soybean foods with a long history are popular worldwide because of rich nutrition. However, many traditional fermented soybean foods have unacceptable bitterness, which mostly comes from the bitter peptides produced from the hydrolysis of soybean proteins. In this review, the bitter peptides in fermented soybean foods is briefly reviewed. The structural properties of bitter receptors and bitter peptides were reviewed. Bitterness is perceived through the binding between bitter compounds and specific sites of bitter receptors (25 hTAS2Rs), which further activate the downstream signal pathway mediated by G-protein. And it converts chemical signals into electrical signals, and transmit them to the brain. In addition, the influencing factors of bitter peptides in fermented soybean foods were summarized. The bitterness of fermented soybean foods primarily results from the raw materials, microbial metabolism during fermentation, unique techniques, and interactions of various flavor compounds. Moreover, the structure-bitterness relationship of bitter peptides was also discussed in this review. The bitterness degree of the bitter peptide is related to the polypeptide hydrophobicity, amino acids in the peptide, peptide molecular weight and polypeptide spatial structure. Studying the bitter peptides and their bitter characteristics in fermented soybean foods is beneficial for improving the sensory quality of fermented soybean foods and prompting more consumers accept them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Kim SL, Berhow MA, Kim JT, Chi HY, Lee SJ, Chung IM (2006) Evaluation of soyasaponin, isoflavone, protein, lipid, and free sugar accumulation in developing soybean seeds. J Agric Food Chem 54:10003–10010. https://doi.org/10.1021/jf062275p

    Article  CAS  PubMed  Google Scholar 

  2. Wang W, Bringe NA, Berhow MA, de Mejia EG (2008) Beta-conglycinins among sources of bioactives in hydrolysates of different soybean varieties that inhibit leukemia cells in vitro. J Agric Food Chem 56:4012–4020. https://doi.org/10.1021/jf8002009

    Article  CAS  PubMed  Google Scholar 

  3. Sanjukta S, Rai AK (2016) Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends Food Sci Technol 50:1–10. https://doi.org/10.1016/j.tifs.2016.01.010

    Article  CAS  Google Scholar 

  4. Ding Y, Li X, Kan J (2017) Isolation and identification of flavor peptides from douchi (traditional chinese soybean food). Int J Food Prop 20:1982–1994. https://doi.org/10.1080/10942912.2017.1360906

    Article  CAS  Google Scholar 

  5. Zhu X, Sun-Waterhouse D, Chen J, Cui C, Wang W (2020) Bitter-tasting hydrophobic peptides prepared from soy sauce using aqueous ethanol solutions influence taste sensation. Int J Food Sci Technol 55:146–156. https://doi.org/10.1111/ijfs.14271

    Article  CAS  Google Scholar 

  6. Liu Y, Han Y, Cao L, Wang X, DouS (2021) Analysis of main components and prospects of Natto. Adv Enzym Res 9:1–9. https://doi.org/10.4236/aer.2021.91001

    Article  CAS  Google Scholar 

  7. Kim H-O, Eunice CY, Li-Chan (2006) Quantitative structure-activity relationship study of bitter peptides. J Agric Food Chem 54:10102–10111. https://doi.org/10.1021/jf062422j

    Article  CAS  Google Scholar 

  8. Karametsi K, Kokkinidou S, Ronningen I, Peterson DG (2014) Identification of bitter peptides in aged cheddar cheese. J Agric Food Chem 62:8034–8041. https://doi.org/10.1021/jf5020654

    Article  CAS  Google Scholar 

  9. Alim A, Song H, Raza A, Hua J (2020) Identification of bitter constituents in milk-based infant formula with hydrolysed milk protein through a sensory-guided technique. Int Dairy J 110. https://doi.org/10.1016/j.idairyj.2020.104803

  10. Forler B, Horstmann G, Schaefer J, Michel C, Weiss A, Stressler T, Fischer L, Hinrichs J, Schmidt H (2021) Effects of protein, calcium, and pH on gene transcription, cell-envelope peptidase activity of Lactococcus lactis strains, and the formation of bitter peptides. https://doi.org/10.3390/foods10071588. Foods 10

  11. Cao X, Zhou X, Cao Y, Liu XM, Zhou LH (2016) Expression of NUCB2/nesfatin-1 in the taste buds of rats. Endocr J 63:37–45. https://doi.org/10.1507/endocrj.EJ15-0489

    Article  CAS  PubMed  Google Scholar 

  12. Wu SV, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E (2002) Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci USA 99:2392–2397. https://doi.org/10.1073/pnas.042617699

    Article  CAS  Google Scholar 

  13. Siryk-Bathgate A, Dabul S, Lymperopoulos A (2013) Current and future G protein-coupled receptor signaling targets for heart failure therapy. Drug Des Dev Ther 7:1209–1222. https://doi.org/10.2147/dddt.S35905

    Article  Google Scholar 

  14. Billington CK, Penn RB (2003) Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Resp Res 4(1):1–23. https://doi.org/10.1186/1465-9921-4-2

    Article  Google Scholar 

  15. Schoneberg T, Schulz A, Biebermann H, Hermsdorf T, Rompler H, Sangkuhl K (2004) Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Therapeut 104:173–206. https://doi.org/10.1016/j.pharmthera.2004.08.008

    Article  CAS  Google Scholar 

  16. Caicedo A, Pereira E, Margolskee RF, Roper SD (2003) Role of the G-protein subunit alpha-gustducin in taste cell responses to bitter stimuli. J Neurosci 23:9947–9952. https://doi.org/10.1016/S0896-6273(03)00679-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wong GT, Gannon KS, Margolskee RF (1996) Transduction of bitter and sweet taste by gustducin. Nature 381:796–800. https://doi.org/10.1038/381796a0

    Article  CAS  PubMed  Google Scholar 

  18. Folwaczny M, Mehl A, Haffner C, Hickel R (1998) Polishing and coating of dental ceramic materials with 308nm XeCl excimer laser radiation. Dent Mater 14:186–193. https://doi.org/10.1016/s0109-5641(98)00029-3

    Article  CAS  PubMed  Google Scholar 

  19. Tan SC, Chai J, Wozniak WT, Takahashi Y (2001) Flexural strength of a glass-infiltrated alumina dental ceramic incorporated with silicon carbide whiskers. Int J Prosthodont 14:350–354. https://doi.org/10.1046/j.1365-2591.2001.00480-2.x

    Article  CAS  PubMed  Google Scholar 

  20. Huang LQ, Shanker YG, Dubauskaite J, Zheng JZ, Yan WT, Rosenzweig S, Spielman AI, Max M, Margolskee RF (1999) G gamma 13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat Neurosc 2:1055–1062. https://doi.org/10.1038/15981

    Article  CAS  Google Scholar 

  21. Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190:285–296. https://doi.org/10.1083/jcb.201003144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaske S, Krasteva G, Koenig P, Kummer W, Hofmann T, Gudermann T, Chubanov V (2007) TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. Bmc Neurosci 8. https://doi.org/10.1186/1471-2202-8-49

  23. Liu XW, Jiang DS, Peterson DG (2014) Identification of bitter peptides in whey protein hydrolysate. J Agric Food Chem 62:5719–5725. https://doi.org/10.1021/jf4019728

    Article  CAS  PubMed  Google Scholar 

  24. Yin H, Jia F, Huang J (2019) The variation of two extracellular enzymes and soybean meal bitterness during solid-state fermentation of Bacillus subtilis. GOST 2:39–43. https://doi.org/10.1016/j.gaost.2019.05.001

    Article  Google Scholar 

  25. Newman J, Egan T, Harbourne N, O’Riordan D, Jacquier JC, O’Sullivan M (2014) Correlation of sensory bitterness in dairy protein hydrolysates: comparison of prediction models built using sensory, chromatographic and electronic tongue data. Talanta 126:46–53. https://doi.org/10.1016/j.talanta.2014.03.036

    Article  CAS  PubMed  Google Scholar 

  26. Ha Da, Sun Q, Su K, Wan H, Li H, Hu N, Sun F, Zhuang L, Wang P (2015) Recent achievements in electronic tongue and bioelectronic tongue as taste sensors. Sens Actuat B-Chem 207:1136–1146. https://doi.org/10.1016/j.snb.2014.09.077

    Article  CAS  Google Scholar 

  27. Hartyáni P, Dalmadi I, Cserhalmi Z, Kántor DB, Tóth-Markus M, Sass-Kiss Á (2011) Physical–chemical and sensory properties of pulsed electric field and high hydrostatic pressure treated citrus juices. Innov Food Sci Emerg 12:255–260. https://doi.org/10.1016/j.ifset.2011.04.008

    Article  CAS  Google Scholar 

  28. Hong M, Caiwa Z, Ke N, Donglin C (2013) Detection of edible oils based on voltammetric electronic tongue. Res J Appl Sci Eng Technol 5:1197–2013. https://doi.org/10.19026/rjaset.5.4837

    Article  Google Scholar 

  29. Sghaier K, Barhoumi H, Maaref A, Siadat M, Jaffrezic-Renault N (2009) Classification and discrimination of different tunisian water samples using an electronic tongue. Sens Lett 7:683–688. https://doi.org/10.1166/sl.2009.1131

    Article  CAS  Google Scholar 

  30. Asao M, Iwamura H, Akamatsu M, Fujita T (1987) Quantitative structure-activity relationships of the bitter thresholds of amino acids, peptides, and their derivatives. J Med Chem 30:1873–1879. https://doi.org/10.1021/jm00393a031

    Article  CAS  PubMed  Google Scholar 

  31. Charoenkwan P, Yana J, Schaduangrat N, Nantasenamat C, Hasan MM, Shoombuatong W (2020) iBitter-SCM: identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides. Genomics 112:2813–2822. https://doi.org/10.1016/j.ygeno.2020.03.019

    Article  CAS  PubMed  Google Scholar 

  32. Charoenkwan P, Nantasenamat C, Hasan MM, Moni MA, Lio P, Shoombuatong W (2021) iBitter-Fuse: a novel sequence-based bitter peptide predictor by fusing multi-view features. Int J Mol Sci 22. https://doi.org/10.3390/ijms22168958

  33. Choi WS, Hee LN, Choi U (2014) Changes in sensory characteristics of Cheonggukjang made with smoked soybeans. Korean J Food Nutr 27:280–286. https://doi.org/10.9799/ksfan.2014.27.2.280

    Article  Google Scholar 

  34. Zhu XP, Sun-Waterhouse DX, Chen JH, Cui C, Wang W (2021) Comparative study on the novel umami-active peptides of the whole soybeans and the defatted soybeans fermented soy sauce. J Sci Food Agric 101:158–166. https://doi.org/10.1002/jsfa.10626

    Article  CAS  Google Scholar 

  35. Li L, Yang XQ, Zhao MM (2005) Contribution of mucor protease to sufu maturation. China Brewing

  36. Lee MY, Park SY, Jung KO, Park KY, Kim SD (2005) Quality and functional characteristics of chungkukjang prepared with vargous Bacillus sp isolated from traditional chungkukjang. J Food Sci 70:M191–M196

    Article  CAS  Google Scholar 

  37. Cui RY, Zheng J, Wu CD, Zhou RQ (2014) Effect of different halophilic microbial fermentation patterns on the volatile compound profiles and sensory properties of soy sauce moromi. Eur Food Res Technol 239:321–331. https://doi.org/10.1007/s00217-014-2225-9

    Article  CAS  Google Scholar 

  38. Zhang Y, Zeng T, Wang H, Song J, Suo H (2021) Correlation between the quality and microbial community of natural-type and artificial-type Yongchuan Douchi. LWT-Food Sci Technol 140. https://doi.org/10.1016/j.lwt.2020.110788

  39. Sco YJ, Kim YH, Kim JK (2008) Differences in manufacturing process and quality between Cheonggukjang for use in the raw and Cheonggukjang for stew. Food Sci Biotechnol 17:1279–1284. https://doi.org/10.1016/j.foodres.2008.07.017

    Article  CAS  Google Scholar 

  40. Imamura M, Katayama H (2017) Sensory differences between commercialized raw (unheated)- and heated-soy sauces: organization of sensory attributes to evaluate japanese soy sauce. J Jpn Soc Food Sci 64:343–354. https://doi.org/10.3136/nskkk.64.343

    Article  Google Scholar 

  41. Qin LK, Ding XL (2007) Evolution of proteolytic tasty components during preparation of douchiba, a traditional chinese soy-fermented appetizer. Food Technol Biotech 45:85–90

    CAS  Google Scholar 

  42. Utami R, Wijaya C, Hand Lioe HN (2016) Taste of water-soluble extracts obtained from over-fermented Tempe. Int J Food Prop 19:2063–2073. https://doi.org/10.1080/10942912.2015.1104509

    Article  CAS  Google Scholar 

  43. Kim S, Dong (2004) Effect of Glycyrrhizia uralensis extract addition on the quality of Cheonggukjang. J East Asian Soci Diet Life 14:571–575

    Google Scholar 

  44. Kim EJ, Hong JY, Shin SR, Heo HJ, Moon YS, Park SH, Kim KS, Yoon KY (2008) Taste composition and biological activities of cheonggukjang containing Rubus coreanum. Food Sci Biotechnol 17:687–691

    CAS  Google Scholar 

  45. Okada Y, Yamaguchi N, Yoshii H (1997) Studies on the reduction of salt concentration in fermented foods, 14: effect of sodium chloride on bitterness of desalted soybean miso. J Jpn Soc Food Sci 44:259–264. https://doi.org/10.3136/nskkk.44.259

    Article  CAS  Google Scholar 

  46. Kim Y, Kim EY, Son HJ, Lee JJ, Choi YH, Rhyu MR (2017) Identification of a key umami-active fraction in modernized korean soy sauce and the impact thereof on bitter-masking. Food Chem 233:256–262. https://doi.org/10.1016/j.foodchem.2017.04.123

    Article  CAS  PubMed  Google Scholar 

  47. Ney KH (1971) Prediction of bitterness of peptides from their amino acid composition. Z Lebensm Unters Forsch 147:64–. https://doi.org/10.1007/bf01879606

    Article  CAS  Google Scholar 

  48. Adler-Nissen J (1976) Enzymatic hydrolysis of proteins for increased solubility. J Agric Food Chem 24:1090–1093. https://doi.org/10.1021/jf60208a021

    Article  CAS  Google Scholar 

  49. Gardner, Ronald J (1980) Correlation of bitterness thresholds of amino acids and peptides with molecular connectivity. J Sci Food Agric 31:23–30. https://doi.org/10.1002/jsfa.2740310105

    Article  Google Scholar 

  50. Mary Clegg K, McMillan AD (1974) Dietary enzymic hydrolysates of protein with reduced bitterness. Int J Food Sci Technol 9:21–29. https://doi.org/10.1111/j.1365-2621.1974.tb01741.x

    Article  Google Scholar 

  51. Lemieux L, Simard RE (1992) Bitter flavour in dairy products. II. A review of bitter peptides from caseins: their formation, isolation and identification, structure masking and inhibition. Lait (France) 72:335–382

    Article  CAS  Google Scholar 

  52. Cho MJ, Unklesbay N, Hsieh FH, Clarke AD (2004) Hydrophobicity of bitter peptides from soy protein hydrolysates. J Agric Food Chem 52:5895–5901. https://doi.org/10.1021/jf0495035

    Article  CAS  Google Scholar 

  53. Kim IMR, Kawamura Y, Lee CH (2003) Isolation and identification of bitter peptides of tryptic hydrolysate of soybean 11S glycinin by reverse-phase high‐performance liquid chromatography. J Food Sci 68:2416–2422. https://doi.org/10.1111/j.1365-2621.2003.tb07039.x

    Article  CAS  Google Scholar 

  54. Lovsin I, Kukman, Zelenik-Blatnik M, Abram V (1995) Isolation of low-molecular-mass hydrophobic bitter peptides in soybean protein hydrolysates by reversed-phase high-performance liquid chromatography. J Chromatogr A 704:113–120. https://doi.org/10.1016/0021-9673(95)00014-E

    Article  Google Scholar 

  55. Kim R, Mi, Yukio, Kawamura, Kim M, Ki, Lee CH (2008) Tastes and structures of bitter peptide, asparagine-alanine-leucine-proline-glutamate, and its synthetic analogues. J Agric Food Chem 56:5852–5858. https://doi.org/10.1021/jf7036664

    Article  CAS  PubMed  Google Scholar 

  56. Li G-H, Wan J-Z, Le G-W, Shi Y-H (2006) Novel angiotensin I-converting enzyme inhibitory peptides isolated from Alcalase hydrolysate of mung bean protein. J Pept Sci 12:509–514. https://doi.org/10.1002/psc.758

    Article  CAS  PubMed  Google Scholar 

  57. Ishibashi N, Sadamori K, Yamamoto O, Kanehisa H, Kouge K, Kikuchi E, Okai H, Fukui S (1987) Bitterness of phenylalanine-and tyrosine-containing peptides. Agric Biol Chem 51:3309–3313

    Google Scholar 

  58. Adler-Nissen J (1986) Enzymic hydrolysis of food proteins. Elsevier Applied Science, London

    Google Scholar 

  59. LovsinKukman I, ZelenikBlatnik M, Abram V (1996) Bitterness intensity of soybean protein hydrolysates - chemical and organoleptic characterization. Z Lebensm-Unters Forsch 203:272–276. https://doi.org/10.1007/bf01192877

    Article  CAS  Google Scholar 

  60. De Wang Wenyi E Gonzalez (2005) A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Compr Rev Food Sci F 4:63–78. https://doi.org/10.1111/j.1541-4337.2005.tb00075.x

    Article  CAS  Google Scholar 

  61. Hiroyuki S, Kazuo O, Yukio S, Naotaka Y, Katura T (1973) Taste of proline-containing peptides. Agric Biol Chem 52:95–98. https://doi.org/10.1271/bbb1961.37.2427

    Article  Google Scholar 

  62. MATOBA, Teruyoshi HATA, Tadao (1972) Relationship between bitterness of peptides and their chemical structures. Agri Biol Chem 36:1423–1431. https://doi.org/10.1080/00021369.1972.10860410

    Article  Google Scholar 

  63. Maehashi K, Huang L (2009) Bitter peptides and bitter taste receptors. Cell Mol Life Sci 66:1661–1671. https://doi.org/10.1007/s00018-009-8755-9

    Article  CAS  PubMed  Google Scholar 

  64. Yimit D, Hoxur P, Amat N, Uchikawa K, Yamaguchi N (2012) Effects of soybean peptide on immune function, brain function, and neurochemistry in healthy volunteers. Nutrition 28:154–159. https://doi.org/10.1016/j.nut.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  65. Andayani SN, Lioe HN, Wijaya CH, Ogawa M (2020) Umami fractions obtained from water-soluble extracts of red oncom and black oncom-indonesian fermented soybean and peanut products. J Food Sci 85:657–665. https://doi.org/10.1111/1750-3841.14942

    Article  CAS  PubMed  Google Scholar 

  66. Kim HJ, Lee DY, Lee I (2021) Quantitative determination of kokumi compounds, gamma-glutamyl peptides, in korean traditional fermented foods, ganjang and doenjang, by LC-MS/MS. Food Sci Biotechnol 30:1465–1470. https://doi.org/10.1007/s10068-021-00993-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rhyu MR, Kim EY (2011) Umami taste characteristics of water extract of Doenjang, a korean soybean paste: low-molecular acidic peptides may be a possible clue to the taste. Food Chem 127:1210–1215. https://doi.org/10.1016/j.foodchem.2011.01.128

    Article  CAS  PubMed  Google Scholar 

  68. Maehashi K, Matano M, Wang H, Vo LA, Yamamoto Y, Huang L (2008) Bitter peptides activate hTAS2Rs, the human bitter receptors. Biochem Bioph Res Co 365:851–855. https://doi.org/10.1016/j.bbrc.2007.11.070

    Article  CAS  Google Scholar 

  69. Ito M, Ikehama K, Yoshida K, Haraguchi T, Yoshida M, Wada K, Uchida T (2013) Bitterness prediction of H-1-antihistamines and prediction of masking effects of artificial sweeteners using an electronic tongue. Int J Pharmaceut 441:121–127. https://doi.org/10.1016/j.ijpharm.2012.11.047

    Article  CAS  Google Scholar 

  70. Idowu AT, Benjakul S (2019) Bitterness of fish protein hydrolysate and its debittering prospects. J Food Biochem 43(6). https://doi.org/10.1111/jfbc.12978

  71. Linde GA, Laverde Junior A, de Faria EV, Colauto NB, de Moraes F, Fand Zanin GM (2009) Taste modification of amino acids and protein hydrolysate by alpha-cyclodextrin. Food Res Int 42:814–818. https://doi.org/10.1016/j.foodres.2009.03.016

    Article  CAS  Google Scholar 

  72. Monge Neto AA, Stroher R, Assenha HBR, Scagion VP, Correa DS, Zanin GM (2017) Interaction of peptides obtained from the enzymatic hydrolysis of soybean meal with cyclodextrins: an evaluation of bitterness reduction. J Incl Phenom Macro 89:59–69. https://doi.org/10.1007/s10847-017-0731-7

    Article  CAS  Google Scholar 

  73. Fu J, Li L, Yang XQ (2011) Specificity of carboxypeptidases from Actinomucor elegans and their debittering effect on soybean protein hydrolysates. Appl Biochem Biotechnol 165:1201–1210. https://doi.org/10.1007/s12010-011-9338-4

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by science and technology research project of Education Department of Jilin Province - Research and Numerical Simulation of Heat and Mass Transfer Mechanism in Beef Roasting Process (JJKH20211128KJ) and Project of Changchun ZhuLaoLiu Food Co., Ltd - Identification and analysis of bitter substances in fermented bean curd and research on the influencing factors of bitterness formation (2021XQ0030) and Project of Changchun ZhuLaoLiu Food Co., Ltd - Development of compound starter for Northeast Sauerkraut and identification of main flavor substances (hp2020001).

Author information

Authors and Affiliations

Authors

Contributions

Shaoping Jiang collected test data, interpreted the results and drafted the manuscript. Xiaodan Wang designed the study. Maosong Yu and Shijie Zhu provided the fund for the research. Jiaxue Tian and Ping Chang collected test data.

Corresponding author

Correspondence to Xiaodan Wang.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Wang, X., Yu, M. et al. Bitter Peptides in Fermented Soybean Foods - A Review. Plant Foods Hum Nutr 78, 261–269 (2023). https://doi.org/10.1007/s11130-023-01077-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-023-01077-3

Keywords

Navigation