Skip to main content
Log in

Selenium-Enriched and Ordinary Black Teas Regulate the Metabolism of Glucose and Lipid and Intestinal Flora of Hyperglycemic Mice

  • Research
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Black tea is one of the six major tea categories and has a variety of bioactivities. However, little is known about its comprehensive evaluation of hypoglycemic effects and potential mechanisms. In this study, we investigated the in vivo hypoglycemic activity and potential mechanism for aqueous extracts of ordinary black tea (BT) and selenium-enriched black tea (Se-BT) by using an established high-fat diet together with streptozotocin (STZ)-induced hyperglycemic mouse model. Additionally, we also explored their α-glucosidase inhibition activity. The results show that both BT and Se-BT had a favorable glycosidase inhibitory activity. Moreover, the intervention of BT and Se-BT could regulate the mRNA expression and the level of serum parameters related to glucose and lipid metabolisms. Accordingly, they could activate the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) signaling pathway and alleviate insulin resistance (IR) and hyperglycemia. Moreover, supplementation of BT and Se-BT increased the richness and diversity of intestinal flora and altered the abundance of beneficial and harmful bacteria. Both BT and Se-BT could regulate glucose metabolism, alleviate tissue damage, and restore intestinal flora dysbiosis, suggesting that they could be used as a natural functional food for preventing hyperglycemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Li H, Fang Q, Nie Q et al (2020) Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on type 2 diabetic rats via gut microbiota and metabolism alteration. J Agric Food Chem 68:10015–10028

    Article  CAS  PubMed  Google Scholar 

  2. Jiang S, Ren D, Li J et al (2014) Effects of compound k on hyperglycemia and insulin resistance in rats with type 2 diabetes mellitus. Fitoterapia 95:58–64

    Article  CAS  PubMed  Google Scholar 

  3. Zhao T, Zhan L, Zhou W et al (2021) The effects of erchen decoction on gut microbiota and lipid metabolism disorders in zucker diabetic fatty rats. Front Pharmacol 12:647529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sirichaiwetchakoon K, Lowe GM, Kupittayanant S et al (2020) Pluchea indica (L.) Less. tea ameliorates hyperglycemia, dyslipidemia, and obesity in high fat diet-fed mice. Evid Based Complement Alternat Med 2020:1–12

    Article  Google Scholar 

  5. Nie Q, Hu J, Chen H et al (2021) Arabinoxylan ameliorates type 2 diabetes by regulating the gut microbiota and metabolites. Food Chem 371:131106–131113

    Article  PubMed  Google Scholar 

  6. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

    Article  CAS  PubMed  Google Scholar 

  7. Zhu J, Wu M, Zhou H et al (2021) Liubao brick tea activates the pi3k-akt signaling pathway to lower blood glucose, metabolic disorders and insulin resistance via altering the intestinal flora. Food Res Int 148:110594

    Article  CAS  PubMed  Google Scholar 

  8. Birhanu W, Ketsela Y, Belete B (2019) Role of gut microbiota in type 2 diabetes mellitus and its complications: novel insights and potential intervention strategies. Korean J Gastroenterol 74:314–320

    Article  Google Scholar 

  9. Larsen N, Vogensen FK, Van DB, Frans WJ et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. Plos One 5:9085

    Article  Google Scholar 

  10. Chen T, Liu AB, Sun S et al (2019) Green tea polyphenols modify the gut microbiome in db/db mice as co-abundance groups correlating with the blood glucose lowering effect. Mol Nutr Food Res 63:1801064

    Article  Google Scholar 

  11. Li S, Chen H, Wang J et al (2015) Involvement of the pi3k/akt signal pathway in the hypoglycemic effects of tea polysaccharides on diabetic mice. Int J Biol Macromol 81:967–974

    Article  CAS  PubMed  Google Scholar 

  12. Gao Y, Zhang M, Wu T et al (2015) Effects of d-pinitol on insulin resistance through the pi3k/akt signaling pathway in type 2 diabetes mellitus rats. J Agric Food Chem 63:6019–6026

    Article  CAS  PubMed  Google Scholar 

  13. Wu M, Wu X, Zhu J et al (2022) Selenium-enriched and ordinary green tea extracts prevent high blood pressure and alter gut microbiota composition of hypertensive rats caused by high-salt diet. Food Sci Human Wellness 11:738–751

    Article  CAS  Google Scholar 

  14. Butacnum A, Chongsuwat R, Bumrungpert A (2017) Black tea consumption improves postprandial glycemic control in normal and pre-diabetic subjects: a randomized, double-blind, placebo-controlled crossover study. Asia Pac J Clin Nutr 26:59–64

    CAS  PubMed  Google Scholar 

  15. Zhu J, Yu C, Han Z et al (2020) Comparative analysis of existence form for selenium and structural characteristics in artificial selenium-enriched and synthetic selenized green tea polysaccharides. Int J Biol Macromol 154:1408–1418

    Article  CAS  PubMed  Google Scholar 

  16. Gao Y, Xu Y, Ruan J et al (2020) Selenium affects the activity of black tea in preventing metabolic syndrome in high-fat diet-fed sprague-dawley rats. J Sci Food Agric 100:225–234

    Article  CAS  PubMed  Google Scholar 

  17. Soran H, Hama S, Yadav R et al (2012) Hdl functionality. Curr Opin Lipidol 23:353–366

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Yu L, Wang Y et al (2019) D-ribose contributes to the glycation of serum protein. Biochim Biophys Acta Mol Basis Dis 1865:2285–2292

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Yu X, Yan Y et al (2015) Pi3k/akt signaling in osteosarcoma. Clin Chim Acta 444:182–192

    Article  CAS  PubMed  Google Scholar 

  20. Di Pino A, DeFronzo RA (2019) Insulin resistance and atherosclerosis: implications for insulin-sensitizing agents. Endocr Rev 40:1447–1467

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rutter GA, Pullen TJ, Hodson DJ et al (2015) Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem J 466:203–218

    Article  CAS  PubMed  Google Scholar 

  22. Ma Q, Li Y, Li P et al (2019) Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed Pharmacother 117:109138

    Article  CAS  PubMed  Google Scholar 

  23. El Kaoutari A, Armougom F, Gordon JI et al (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11:497–504

    Article  PubMed  Google Scholar 

  24. Wu M, Yang S, Wang S et al (2020) Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed apoe-/- mice. Front Pharmacol 11:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perry RJ, Peng L, Barry NA et al (2016) Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 534:213–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ren X, Wang L, Chen Z et al (2021) Foxtail millet improves blood glucose metabolism in diabetic rats through pi3k/akt and nf-κb signaling pathways mediated by gut microbiota. Nutrients 13:1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60

    Article  CAS  PubMed  Google Scholar 

  28. Jiao N, Baker SS, Nugent CA et al (2018) Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis. Physiol Genomics 50:244–254

    Article  CAS  PubMed  Google Scholar 

  29. Hiippala K, Barreto G, Burrello C et al (2020) Novel Odoribacter splanchnicus strain and its outer membrane vesicles exert immunoregulatory effects in vitro. Front Microbiol 11:575455

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the glucosamine selenium fertilizer supply by Shuanglin Liang from Jiangsu Shuanglin Marine Biological Pharmaceutical Co., Ltd, and tea production by Xueyun Wang from Enshi Selenium Impression Agricultural Development Co., Ltd. (Enshi, China).

Funding

The authors are grateful for financial sponsored by the Key project in Agricultural science and technology funded by Shanghai Science and Technology Commission (No. 20392002100), National Key R&D Program of China (No.2018YFC1604405), Fund of Shanghai Engineering Research Center of Plant Germplasm Resources (No. 17DZ2252700), and Research on the health function of tea and deep-processed products in preventing metabolic diseases (No. C-6105-20-074).

Author information

Authors and Affiliations

Authors

Contributions

LS and FL: writing-original draft and data preparation. JZ: Validation. CS: supervision and manuscript revision. YW: project administration and funding acquisition.

Corresponding authors

Correspondence to Chuanwen Sun or Yuanfeng Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1319 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, L., Li, F., Zhu, J. et al. Selenium-Enriched and Ordinary Black Teas Regulate the Metabolism of Glucose and Lipid and Intestinal Flora of Hyperglycemic Mice. Plant Foods Hum Nutr 78, 61–67 (2023). https://doi.org/10.1007/s11130-022-01022-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-022-01022-w

Keywords

Navigation