Skip to main content
Log in

Tea Polyphenols Attenuates Inflammation via Reducing Lipopolysaccharides Level and Inhibiting TLR4/NF-κB Pathway in Obese Mice

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Obesity is a worldwide epidemic and increases the risk of metabolic syndrome through chronic inflammation. Tea polyphenols (TP), the major functional component of tea, has shown preventive effects on obesity and obesity-related disease, but the underlying mechanism is complicated and remains obscure. The present study was aimed to elucidate the anti-inflammation effect of TP in high-fat-diet (HFD)-induced obese mice. Results showed that TP reduced obesity-induced inflammation and systemic lipopolysaccharides (LPS) level. The decrease of LPS level in circulation was followed by the downregulation of LPS specific receptor, toll-like receptor 4 (TLR4), and its co-receptor cluster of differentiation 14 (CD14) and adaptor protein differentiation factor 88 (MyD88) in hepatic and adipose tissues. That further inhibited the activation of nuclear factor κB (NF-κB). The serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β) and interleukin-6 (IL-6) were significantly decreased by TP in HFD-fed mice. TP also maintained the intestinal barrier integrity by increasing intestinal tight junction proteins and reversed gut dysbiosis in obese mice. These results suggested that TP attenuated obesity-induced inflammation by reducing systemic LPS level and inhibiting LPS-activated TLR4/NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB et al (2017) Obesity. Nat Rev Dis Primers 3:17034. https://doi.org/10.1038/nrdp.2017.34

    Article  PubMed  Google Scholar 

  2. Roden M, Shulman GI (2019) The integrative biology of type 2 diabetes. Nature 576(7785):51–60. https://doi.org/10.1038/s41586-019-1797-8

    Article  CAS  PubMed  Google Scholar 

  3. Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772. https://doi.org/10.2337/db06-1491

    Article  CAS  PubMed  Google Scholar 

  4. Amar J, Burcelin R, Ruidavets JB et al (2008) Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 87(5):1219–1223. https://doi.org/10.1093/ajcn/87.5.1219

    Article  CAS  PubMed  Google Scholar 

  5. Erridge C, Attina T, Spickett CM, Webb DJ (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammati-on. Am J Clin Nutr 86(5):1286–1292. https://doi.org/10.1093/ajcn/86.5.1286

    Article  CAS  PubMed  Google Scholar 

  6. Saad MJ, Santos A, Prada PO (2016) Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology 31(4):283–293. https://doi.org/10.1152/physiol.00041.2015

    Article  CAS  PubMed  Google Scholar 

  7. Kawser HM, Abdal DA, Han J et al (2016) Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci 17(4):569. https://doi.org/10.3390/ijms17040569

    Article  CAS  Google Scholar 

  8. Khan N, Mukhtar H (2018) Tea polyphenols in promotion of human health. Nutrients 11(1):39. https://doi.org/10.3390/nu11010039

    Article  CAS  PubMed Central  Google Scholar 

  9. Xing L, Zhang H, Qi R et al (2019) Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J Agric Food Chem 67(4):1029–1043. https://doi.org/10.1021/acs.jafc.8b06146

    Article  CAS  PubMed  Google Scholar 

  10. Axling U, Olsson C, Xu J et al (2012) Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice. Nutr Metab (Lond) 9(1):105. https://doi.org/10.1186/1743-7075-9-105

    Article  CAS  Google Scholar 

  11. Wang L, Zeng B, Zhang X et al (2016) The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice. Food Funct 7(12):4956–4966. https://doi.org/10.1039/c6fo01150k

    Article  CAS  PubMed  Google Scholar 

  12. Cunha CA, Lira FS, Rosa NJ et al (2013) Green tea extract supplementation induces the lipolytic pathway, attenuates obesity, and reduces low-grade inflammation in mice fed a high-fat diet. Mediators Inflamm 2013:635470. https://doi.org/10.1155/2013/635470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klaus S, Pultz S, Thone-Reineke C, Wolfram S (2005) Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes (Lond) 29(6):615–623. https://doi.org/10.1038/sj.ijo.0802926

    Article  CAS  Google Scholar 

  14. Cani PD, Bibiloni R, Knauf C et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481. https://doi.org/10.2337/db07-1403

    Article  CAS  PubMed  Google Scholar 

  15. Zhao L (2013) The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 11(9):639–647. https://doi.org/10.1038/nrmicro3089

    Article  CAS  PubMed  Google Scholar 

  16. Seki E, Brenner DA (2008) Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48(1):322–335. https://doi.org/10.1002/hep.22306

    Article  CAS  PubMed  Google Scholar 

  17. Lorenzo C, Dell’Agli M, Sangiovanni E et al (2013) Correlation between catechin content and NF-kappaB inhibition by infusions of green and black tea. Plant Foods Hum Nutr 68(2):149–154. https://doi.org/10.1007/s11130-013-0354-0

    Article  CAS  PubMed  Google Scholar 

  18. Liu J, Hao W, He Z et al (2019) Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet. Food Funct 10(5):2847–2860. https://doi.org/10.1039/c8fo02051e

    Article  CAS  PubMed  Google Scholar 

  19. Liu Z, Bruins ME, Ni L, Vincken JP (2018) Green and black tea phenolics: bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota. J Agric Food Chem 66(32):8469–8477. https://doi.org/10.1021/acs.jafc.8b02233

    Article  CAS  PubMed  Google Scholar 

  20. Marchesi JR, Adams DH, Fava F et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65(2):330–339. https://doi.org/10.1136/gutjnl-2015-309990

    Article  PubMed  Google Scholar 

  21. Zhang X, Zhang M, Ho C et al (2018) Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model. J Funct Foods 46:268–277. https://doi.org/10.1016/j.jff.2018.05.003

    Article  CAS  Google Scholar 

  22. Cheng M, Zhang X, Zhu J et al (2018) A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols. Food Funct 9(2):1079–1087. https://doi.org/10.1039/c7fo01570d

    Article  CAS  PubMed  Google Scholar 

  23. Henning SM, Yang J, Hsu M et al (2018) Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. Eur J Nutr 57(8):2759–2769. https://doi.org/10.1007/s00394-017-1542-8

    Article  CAS  PubMed  Google Scholar 

  24. Atarashi K, Tanoue T, Oshima K et al (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500(7461):232–236. https://doi.org/10.1038/nature12331

    Article  CAS  PubMed  Google Scholar 

  25. Musso G, Gambino R, Cassader M (2011) Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med 62:361–380. https://doi.org/10.1146/annurev-med-012510-175505

    Article  CAS  PubMed  Google Scholar 

  26. Liu Z, Chen Z, Guo H et al (2016) The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice. Food Funct 7(12):4869–4879. https://doi.org/10.1039/c6fo01439a

    Article  CAS  PubMed  Google Scholar 

  27. Takabayashi F, Harada N, Yamada M et al (2004) Inhibitory effect of green tea catechins in combination with sucralfate on Helicobacter pylori infection in Mongolian gerbils. J Gastroenterol 39(1):61–63. https://doi.org/10.1007/s00535-003-1246-0

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Zhu X, Sun Y et al (2013) Fermentation in vitro of EGCG, GCG and EGCG3 ’ ’ Me isolated from Oolong tea by human intestinal microbiota. Food Res Int 54(2):1589–1595. https://doi.org/10.1016/j.foodres.2013.10.005

    Article  CAS  Google Scholar 

  29. Cani PD, Possemiers S, Van de Wiele T et al (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58(8):1091–1103. https://doi.org/10.1136/gut.2008.165886

    Article  CAS  PubMed  Google Scholar 

  30. Delzenne NM, Neyrinck AM, Backhed F et al (2011) Targeting gut microbiota in obesity: effects of prebiotics and probiotics[J]. Nat Rev Endocrinology 7(11):639–646. https://doi.org/10.1038/nrendo.2011.126

    Article  CAS  PubMed  Google Scholar 

  31. Everard A, Belzer C, Geurts L et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110(22):9066–9071. https://doi.org/10.1073/pnas.1219451110

    Article  PubMed  PubMed Central  Google Scholar 

  32. Everard A, Lazarevic V, Derrien M et al (2011) Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60(11):2775–2786. https://doi.org/10.2337/db11-0227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Santacruz A, Collado MC, Garcia-Valdes L et al (2010) Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 104(1):83–92. https://doi.org/10.1017/S0007114510000176

    Article  CAS  PubMed  Google Scholar 

  34. Lam YY, Ha CW, Campbell CR et al (2012) Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS ONE 7(3):e34233. https://doi.org/10.1371/journal.pone.0034233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Plan (2017YFD0400803), Platform Construction Project of Chinese White Tea Science and Technology Correspondent (2020L3031), and the Science and Technology Innovation Platform Project of Fujian Provincial Department of Science and Technology (2018N2004).

Author information

Authors and Affiliations

Authors

Contributions

Research design: Yushan Ye and Puming He. Experiments performing: Yushan Ye, Hasitha Warusawitharana, Hangye Zhao and Puming He. Research advice: Zhonghua Liu, Yuanyuan Wu, Bo Li and Youying Tu. Data analysis and manuscript writing: Yushan Ye. Manuscript revise: Bo Li, Youying Tu and Puming He.

Corresponding author

Correspondence to Puming He.

Ethics declarations

Ethics Approval

The animal experiment protocol was approved by the Animal Care Committee of Zhejiang University (Approval NO. ZJU20200058).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 950 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Warusawitharana, H., Zhao, H. et al. Tea Polyphenols Attenuates Inflammation via Reducing Lipopolysaccharides Level and Inhibiting TLR4/NF-κB Pathway in Obese Mice. Plant Foods Hum Nutr 77, 105–111 (2022). https://doi.org/10.1007/s11130-021-00937-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-021-00937-0

Keywords

Navigation