Skip to main content

Beyond the Cereal Box: Breeding Buckwheat as a Strategic Crop for Human Nutrition

Abstract

While intensification of farming systems is essential for achieving the Millennium Development Goal of “Zero hunger”, issues such as availability of nutritious foods would demand increased attention if any long-term form of food security is to be achieved. Since wheat, rice and maize have reached near to 80 percent of their yield potential and reliance on these crops alone would not be sufficient to close the gap between demand and supply, there is a need to bring other climate-resilient and nutritionally dense crops into agricultural portfolio. Buckwheat (Fagopyrum spp.) has attracted considerable interest amongst global scientific community due to its nutritional and pharmaceutical properties. The gluten free nature of buckwheat, nutritionally balanced amino acid composition of its grain protein, and high levels of anti-oxidants, such as rutin, makes buckwheat an important crop with immense nutraceutical benefits. However, a key challenge in buckwheat cultivation is the variation in yield between years, which impacts the entire value chain. Current information on buckwheat indicates existence of significant phenotypic variation for agronomic and nutritional traits. However, genetic bottlenecks in conventional breeding restrict effective utilization of the existing diversity in mainstreaming buckwheat cultivation. Availability of high density buckwheat genome map for both the cultivated species viz. F. esculentum and F. tataricum would add to our understanding of genetic basis of their agronomic traits. The review examines the potential of buckwheat as a strategic crop for human nutrition and prospects of effective exploitation genomic information of common and Tartary buckwheat for genome assisted breeding.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    FAO (2020) The state of food security and nutrition in the world 2020. Transforming food systems for affordable healthy diets. Rome. https://doi.org/10.4060/ca9692en

  2. 2.

    FAO (2021) International Network of FOOD Data Systems (INFOODS). http://www.fao.org/infoods/infoods/food-biodiversity/en/. Accessed 15 Feb 2021.

  3. 3.

    DeHaan LR, Van Tassel DL, Anderson JA, Asselin SR, Barnes R, Baute GJ, Zhang X (2016) A pipeline strategy for grain crop domestication. Crop Sci 56:917–930. https://doi.org/10.2135/cropsci2015.06.0356

    Article  Google Scholar 

  4. 4.

    McKevith B (2004) Nutritional aspects of cereals. British Nutrition Foundation Nutr Bull 29:111–141. https://doi.org/10.1111/j.1467-3010.2004.00418.x

  5. 5.

    Jin J, Li D, Chen S and Li B (2018) A common Bistorta was misidentified as a novel species in Fagopyrum (Polygonaceae): the confirmation of the taxonomic identify of F. hailuogouense by morphological and molecular evidences. Phytotaxa 348:221–228. https://doi.org/10.11646/PHYTOTAXA.348.3.5

  6. 6.

    Bonafaccia G, Marocchini M, Kreft I (2003) Composition and technological properties of the flour and bran from common and Tartary buckwheat. Food Chem 80:9–15. https://doi.org/10.1016/S0308-8146(02)00228-5

    CAS  Article  Google Scholar 

  7. 7.

    DziedzicK, Górecka D, Szwengiel A, Sulewska H, Kreft I, Gujska E and Walkowiak J (2018) The content of dietary fiber and polyphenols in morphological parts of buckwheat (Fagopyrum tataricum) Plant Foods Hum Nutr 73:82–88. https://doi.org/10.1007/s11130-018-0659-0

  8. 8.

    Rout MK, Chrungoo NK (1996) Partial characterization of lysine rich 13S globulin from buckwheat (Fagopyrum esculentum Moench): its antigenic homology with seed proteins of some other crops. IUBMB Life 40:87–595. https://doi.org/10.1080/15216549600201173

    Article  Google Scholar 

  9. 9.

    Ikeda K, Sakaguchi T, Kusano T and Yasumoto K (1991) Endogenous factors affecting protein digestibility in buckwheat. Cereal Chem 68:424–427. https://www.cerealsgrains.org/publications/cc/backissues/1991/Documents/68_424.pdf.9. Accessed 10 Nov 2020

  10. 10.

    Ikeda K and Asami Y (2000) Mechanical characteristics of buckwheat noodles. Fagopyrum 17:67–72. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.543.9347&rep=rep1&type=pdf. Accessed 08 Nov 2020.

  11. 11.

    Bharali S, Chrungoo NK (2003) Amino acid sequence of the 26KDA subunit of legumin-type seed storage protein of common buckwheat (Fagopyrum esculentum Moench): molecular charaterization and phylogenetic analysis. Phytochemistry 63:1–5. https://doi.org/10.1016/S0031-9422(02)00755-0

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Krkošková B, Mrazova Z (2005) Prophylactic components of buckwheat. Food Res Int 38:561–568. https://doi.org/10.1016/j.foodres.2004.11.009

    Article  Google Scholar 

  13. 13.

    Metzger BT, Barnes DM, Reed JD (2007) Insoluble fraction of buckwheat (Fagopyrum esculentum Moench) protein possessing cholesterol-binding properties that reduce micelle cholesterol solubility and uptake by Caco-2 cells. J Agric Food Chem 55:6032–6038. https://doi.org/10.1021/jf0709496

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Ikeda K (2002) Buckwheat composition, chemistry, and processing. Adv Food Nutr Res 44:395–434. https://doi.org/10.1016/S1043-4526(02)44008-9

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Ikeda S, Yamashita Y, Tomura K and Kreft I (2006) Nutritional comparison in mineral characteristics between buckwheat and cereals. Fagopyrum 23:61–65. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.565.7879&rep=rep1&type=pdf. Accessed 23 Feb 2021.

  16. 16.

    Kalinova J, Vrchotova N (2009) Level of catechin, myricetin, quercetin and isoquercitrin in buckwheat (Fagopyrum esculentum Moench), changes of their levels during vegetation and their effect on the growth of selected weeds. J Agric Food Chem 57:2719–2725. https://doi.org/10.1021/jf803633f

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Kim SJ, Zaidul ISM, Maeda T, Suzuki T, Hashimoto N, Takigawa S, Noda T, Matsuura-Endo C, Yamauchi H (2007) A time-course study of flavonoids in the sprouts of Tartary (Fagopyrum tataricum Gaertn.) buckwheats. Sci Hortic 115:13–18. https://doi.org/10.1016/j.scienta.2007.07.018

    CAS  Article  Google Scholar 

  18. 18.

    Kiprovski B, Mikulic-Petkovsek M, Slatnar A, Veberic R, Stampar F, Malencic D, Latkovic D (2015) Comparison of phenolic profiles and antioxidant properties of European Fagopyrum esculentum cultivars. Food Chem 185:41–47. https://doi.org/10.1016/j.foodchem.2015.03.137

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Park CH, Yeo HJ, Park YJ, Morgan A, Valan AM, Al-Dhabi NA, Park SU (2017) Influence of indole-3-acetic acid and gibberellic acid on phenylpropanoid accumulation in common buckwheat (Fagopyrum esculentum Moench) sprouts. Molecules 22:374–384. https://doi.org/10.3390/molecules22030374

    CAS  Article  PubMed Central  Google Scholar 

  20. 20.

    Kreft S, Strukel B, Gaberscik A, Kreft I (2002) Rutin in buckwheat herbs grown at different UV-B radiation levels: comparison of two UV spectrophotometric and an HPLC method. J Exp Bot 53:1801–1804. https://doi.org/10.1093/jxb/erf032

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Javed H, Khan MM, Ahmad A, Vaibhav K, Ahmad ME, Khan A, Ashafaq MF, Islam M, Siddiqui S, Safhi MM, Islam F (2012) Rutin prevents cognitive impairments by ameliorating oxidative stress and neuro-inflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 210:340–352. https://doi.org/10.1016/j.neuroscience.2012.02.046

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Ganeshpurkar A, Saluja AK (2017) The pharmacological potential of rutin. SPJ 25:149–164. https://doi.org/10.1016/j.jsps.2016.04.025

    Article  PubMed  Google Scholar 

  23. 23.

    Calderon-Montano JM, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazaro M (2011) A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11:298–344. https://doi.org/10.2174/138955711795305335

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Choi JY, Cho EJ, Lee HS, Lee JM, Yoon YH, Lee S (2013) Tartary buckwheat improves cognition and memory function in an in vivo amyloid-β-induced Alzheimer model. Food Chem Toxicol 53:105–111. https://doi.org/10.1016/j.fct.2012.11.002

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Suzuki T, Morishita T (2016) Bitterness generation, rutin hydrolysis, and development of trace rutinosidase variety in Tartary buckwheat, In: Meiliang Z, Kreft I, Woo S-H, Chrungoo N, Wieslander G (eds) Molecular Breeding and Nutritional Aspects of Buckwheat, Academic Press, London pp 345–353. https://doi.org/10.1016/B978-0-12-803692-1.00027-4

  26. 26.

    Bai CZ, Ji HJ, Feng ML, Hao XL, Zhong QM, Cui XD, Wang ZH (2015) Stimulation of dendritic cell maturation and induction of apoptosis in lymphoma cells by a stable lectin from buckwheat seeds. Genet Mol Res 1:2162–2175. https://doi.org/10.4238/2015.March.27.3

    CAS  Article  Google Scholar 

  27. 27.

    Ikeda K, Fujiwara J, Asami Y, Arai R, Bonafaccia G, Kreft I and Yasumoto K (1999) Relationship of protein to the textural characteristics of buckwheat products: analysis with various buckwheat flour fractions. Fagopyrum 16:79–83. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.538.7745&rep=rep1&type=pdf. Accessed 23 Dec 2020.

  28. 28.

    Steadman KJ, Burgoon MS, Lewis BA, Edwardson SE, Obendorf RL (2001) Buckwheat seed milling fractions: description, macronutrient composition and dietary fiber. J Cereal Sci 33:271–278. https://doi.org/10.1006/jcrs.2001.0366

    CAS  Article  Google Scholar 

  29. 29.

    Reynolds AN, Akerman AP, Mann J (2020) Dietary fiber and whole grains in diabetes management: systematic review and meta-analyses. PLoS Med 17:e1003053. https://doi.org/10.1371/journal.pmed.1003053

  30. 30.

    Alonso-Miravalles L, O’Mahony JA (2018) Composition, protein profile and rheological properties of pseudocereal-based protein-rich ingredients. Foods 7:73. https://doi.org/10.3390/foods7050073

    CAS  Article  PubMed Central  Google Scholar 

  31. 31.

    U.S. Department of Agriculture, Agricultural Research Service (2019). Food Data Central. Release 28. https://fdc.nal.usda.gov/

  32. 32.

    Alam MK, Rana ZH, Islam S (2016) Comparison of the proximate composition, total carotenoids and total polyphenol content of nine orange-fleshed sweet potato varieties grown in Bangladesh. Foods 5:64. https://doi.org/10.3390/foods5030064

    CAS  Article  PubMed Central  Google Scholar 

  33. 33.

    Beals KA (2019) Potatoes, nutrition and health. Am J Potato Res 96:102–110. https://doi.org/10.1007/s12230-018-09705-4

    CAS  Article  Google Scholar 

  34. 34.

    Montagnac JA, Davis CR, Tanumihardjo SA (2009) Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Saf 8:181–194. https://doi.org/10.1111/j.1541-4337.2009.00077.x

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Eliasson AC and Larsson K (1993) Cereals in breadmaking: a molecular colloidal approach. Marcel Dekker, New York. https://doi.org/10.1201/9781315139005

  36. 36.

    Owens BF, Lipka AE, Magallanes-Lundback M, Tiede T, Diepenbrock CH, Kandianis CB, Rocheford T (2014) A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 1984:1699–1716. https://doi.org/10.1534/genetics.114.169979

    CAS  Article  Google Scholar 

  37. 37.

    Lamberts L, Delcour JA (2008) Carotenoids in raw and parboiled brown and milled rice. J Agric Food Chem 56:11914–11919. https://doi.org/10.1021/jf802613c

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Gopalan C, Sastri BVR and Balasubramanian SC (2004) Nutritive Value of Indian Foods. National Institute of Nutrition, ICMR, Hyderabad, India, pp: 2–58. http://www.biologyeducation.net/wp-content/uploads/NUTRITIVE-VALUE-OF-INDIAN-FOODS-ICMR_Optimized.pdf. 18. Accessed 11 Apr 2021.

  39. 39.

    Kandlakunta B, Rajendran A, Thingnganing L (2008) Carotene content of some common (cereals, pulses, vegetables, spices and condiments) and unconventional sources of plant origin. Food Chem 106:85–89. https://doi.org/10.1016/j.foodchem.2007.05.071

    CAS  Article  Google Scholar 

  40. 40.

    Wu LY, Wang B, Schoen DJ, Huang SQ (2017) Transitions from distyly to homostyly are associated with floral evolution in buckwheat genus (Fagopyrum). Am J Bot 104:1232–1240. https://doi.org/10.3732/ajb.1700189

    Article  PubMed  Google Scholar 

  41. 41.

    Zhang K, He M, Fan Y, Zhao H, Gao B, Yang K, Li F, Tang Y, Gao Q, Lin T, Quinet M, Janovská D, Meglič V, Kwiatkowski J, Romanova O, Chrungoo NK, Suzuki T, Luthar Z, Germ M, Woo S-H, Georgiev MI, Zhou M (2021) Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biol 22:1–17. https://doi.org/10.1186/s13059-020-02217-7

    CAS  Article  Google Scholar 

  42. 42.

    Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939. https://doi.org/10.1126/science.1123604

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719. https://doi.org/10.1038/nature03863

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40:1360–1364. https://doi.org/10.1038/ng.197

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Yabe S, Iwata H (2020) Genomics-assisted breeding in minor and pseudo-cereals. Breeding Sci 70:19–31. https://doi.org/10.1270/jsbbs.19100

    CAS  Article  Google Scholar 

  46. 46.

    Mukasa Y (2011) Studies on new breeding methodologies and variety developments of two buckwheat species (Fagopyrum esculentumMoench and F. tataricumGaertn.). Res Bull NARO Hokkaido Agric Res Cent 195:57–114. https://www.naro.go.jp/publicity_report/publication/archive/files/195-04en.pdf. Accessed 20 Nov 2020

  47. 47.

    Bohanec B, Neškovic M, Vujičić R (1993) Anther culture and androgenetic plant regeneration in buckwheat (Fagopyrum esculentum Moench). Plant Cell Tiss Organ Cult 35:259–266. https://doi.org/10.1007/BF00037279

    Article  Google Scholar 

  48. 48.

    Bohenac B (1995) Progress of buckwheat in vitro culture techniques with special aspect on induction of haploid plants. Curr Adv Buckwheat Res 1:205–209. https://citeseerax.ist.psu.edu/viewdoc/download?doi=10.1.1.575.3808&rep=rep1&type=pdf. Accessed 21 Nov 2020

  49. 49.

    Morris MR (1951) Cytogenetic Studies in buckwheat: genetic and cytological studies of compatibility in relation to heterostyly in common buckwheat (Fagopyrum sagittatum). J Hered 42:85–89. https://doi.org/10.1093/oxfordjournals.jhered.a106171

  50. 50.

    Wang YJ, Campbell CG (1998) Interspecific hybridization in buckwheat among Fagopyrum esculentum, F. homotropicum, and F. tataricum. Proc VIIth Intl Symp Buckwheat, Ina, Japan, pp. 1–12. https://ci.nii.ac.jp/naid/10007833084/

  51. 51.

    Matsui K, Tetsuka T, Hara T (2003) Two independent gene loci controlling non-brittle pedicels in buckwheat. Euphytica 134:203–208. https://doi.org/10.1023/B:EUPH.0000003911.70493.cd

    CAS  Article  Google Scholar 

  52. 52.

    Chen QF (2016) Recent progresses on interspecific crossbreeding of genus Fagopyrum Mill. In: Proc 13th Intl Symp Buckwheat, Cheongju, Korea, pp. 9–11

  53. 53.

    Campbell CG (1995) Inter-specific hybridization in the genus Fagopyrum. In: Proc VIIth Intl Symp Buckwheat, Ina, Japan, pp. 255–263. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.562.9442&rep=rep1&type=pdf. Accessed 02 Mar 2021

  54. 54.

    Woo SH and Adachi T (1997) Production of interspecific hybrids between Fagopyrum esculentum and F. homotropicum through embryo rescue. SABRAO J Genet 29:89–95. https://ci.nii.ac.jp/naid/10010144886/. Accessed 02 Mar 2021

  55. 55.

    Woo SH, Wang YJ and Campbell CG (1999) Interspecific hybrids with Fagopyrum cymosum in the genus Fagopyrum. Fagopyrum 16:13–18. https://ci.nii.ac.jp/naid/10016468109/. Accessed 03 Mar 2021

  56. 56.

    Matsui K, Tetsuka T, Hara T and Morishita T (2008) Breeding and characterization of a new self-compatible common buckwheat (Fagopyrum esculentum) parental line, 'Buckwheat Norin-PL1'. Bulletin of the National Agricultural Research Center for Kyushu Okinawa Region (Japan). https://agris.fao.org/agris-search/search.do?recordID=JP2008002417. Accessed 03 Feb 2021

  57. 57.

    Woo SH, Adachi T, Jong SK, Campbell CG (1999) Inheritance of self-compatibility and flower morphology in an inter-specific buckwheat hybrid. Can J Plant Sci 79:483–490. https://doi.org/10.4141/P98-117

    Article  Google Scholar 

  58. 58.

    Woo SH, Kim SH, Tsai KS, Chung, KY Jong, SK, Adachi T and Choi JS (2008) Pollen-tube behavior and embryo development in inter specific crosses among the genus Fagopyrum. J Plant Biol 51:302–310. https://doi.org/10.1007/BF03036131

  59. 59.

    Matsui K, Tetsuka T, Nishio T, Hara T (2003) Heteromorphic incompatibility retained in self-compatible plants produced by a cross between common and wild buckwheat. New Phytol 159:701–708. https://doi.org/10.1046/j.1469-8137.2003.00840.x

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Matsui K, Nishio T, Tetsuka T (2004) Genes outside the S supergene suppress S functions in buckwheat (Fagopyrum esculentum). Ann Bot 94:805–809. https://doi.org/10.1093/aob/mch206

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, Costa de Oliveira A, Cseke LJ, De DH, Pace C, Edwards D (2016) Global agricultural intensification during climate change: a role for genomics. Plant Biotechnol J 14:1095–1098. https://doi.org/10.1111/pbi.12467

    Article  PubMed  Google Scholar 

  62. 62.

    Bernardo R (2016) Bandwagons I, too, have known. Theor Appl Genet 129:2323–2332. https://doi.org/10.1007/s00122-016-2772-5

    Article  PubMed  Google Scholar 

  63. 63.

    Hickey JM, Chiurugwi T, Mackay I, Powell W, Eggen A, Kilian A, Jones C, Canales C, Grattapaglia D, Bassi F, Atlin G (2017) Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat Genet 49:1297–1303. https://doi.org/10.1038/ng.3920

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Yabe S, Iwata H (2020) Genomics-assisted breeding in minor and pseudo-cereals. Breed Sci 70:19–31. https://doi.org/10.1270/jsbbs.19100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Hara T, Iwata H, Okuno K, Matsui K, Ohsawa R (2011) QTL analysis of photoperiod sensitivity in common buckwheat by using markers for expressed sequence tags and photoperiod-sensitivity candidate genes. Breed Sci 61:394–404. https://doi.org/10.1270/jsbbs.61.394

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Yabe S, Hara T, Ueno M, Enoki H, Kimura T, Nishimura S, Yasui Y, Ohsawa R, Iwata H (2014) Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum Moench). Breed Sci 64:291–299. https://doi.org/10.1270/jsbbs.64.291

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Yabe S, Hara T, Ueno M, Enoki H, Kimura T, Nishimura S, Yasui Y, Ohsawa R, Iwata H (2018) Potential of genomic selection in mass selection breeding of an allogamous crop: an empirical study to increase yield of common buckwheat. Front Plant Sci 9:276. https://doi.org/10.3389/fpls.2018.00276

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Yasui Y, Hirakawa H, Ueno M, Matsui K, Katsube-Tanaka T, Yang SJ, Aii J, Sato S, Mori M (2016) Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes. DNA Res 23:215–224. https://doi.org/10.1093/dnares/dsw012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Zhang L, Li X, Ma B, Gao Q, Du H, Han Y, Qiao Z (2017) The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Mol Plant 10:1224–1237. https://doi.org/10.1016/j.molp.2017.08.013

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Wu Q, Bai X, Zhao W, Xiang D, Wan Y, Yan J, Zou L and Zhao G (2017) De novo assembly and analysis of Tartary buckwheat (Fagopyrum tataricum Garetn.) transcriptome discloses key regulators involved in salt-stress response. Genes 8:255. https://doi.org/10.3390/genes8100255

  71. 71.

    Hu Y, Zhang Z, Wu B, Gao J, Li Y (2016) Genetic relationships of buckwheat species based on the sequence analysis of ITS and ndhF-rpl32. Biodiversity Sci 24:296–302. https://doi.org/10.1270/jsbbs.19100

    CAS  Article  Google Scholar 

  72. 72.

    Logacheva MD, Kasianov AS, Vinogradov DV, Samigullin TH, Gelfand MS, Makeev VJ, PeninAA, (2011) De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum). BMC Genomics 12:1–7. https://doi.org/10.1186/1471-2164-12-30

    CAS  Article  Google Scholar 

  73. 73.

    Nay MM, Byrne SL, Pérez EA, Walter A, Studer B (2020) Genetic characterization of buckwheat accessions through genome-wide allele-frequency fingerprints. Folia Biol Geol 61:17–23. https://doi.org/10.3986/fbg0063

    Article  Google Scholar 

  74. 74.

    Shi T, Li R, Chen Q, Li Y, Pan F, Chen Q (2017) De novo sequencing of seed transcriptome and development of genic-SSR markers in common buckwheat (Fagopyrum esculentum). Mol Breed 37:147. https://doi.org/10.1007/s11032-017-0743-4

    CAS  Article  Google Scholar 

  75. 75.

    Penin AA, Kasianov AS, Klepikova A V, Kirov IV, Gerasimov ES, Fesenko AN and Logacheva MD (2020) High-resolution transcriptome atlas and improved genome assembly of common buckwheat, Fagopyrum esculentum. Front Plant Sci. https://doi.org/10.3389/fpls.2021.612382

  76. 76.

    Zhang L, Ma M, Liu L (2020) Identification of genetic locus underlying easy dehulling in rice-tartary for easy postharvest processing of Tartary buckwheat. Genes 11:459. https://doi.org/10.3390/genes11040459

    CAS  Article  PubMed Central  Google Scholar 

  77. 77.

    Song Y, Fang Q, Jarvis D, Bai K, Liu D, Feng J, Long C (2019) Network analysis of seed flow, a traditional method for conserving Tartary buckwheat (Fagopyrum tataricum) landraces in Liangshan, Southwest China. Sustainability 11:4263. https://doi.org/10.3390/su11164263

    Article  Google Scholar 

Download references

Funding

Financial support from Department of Biotechnology, Govt. of India, New Delhi to NKC for undertaking the work under DBT Biotech Hub project vide grant no. BT/04/NE/2009 is gratefully acknowledged.

Author information

Affiliations

Authors

Contributions

Conceptualization: NKC; Writing of text and editing: UC and NKC (equally responsible). The authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Nikhil K. Chrungoo.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chettry, U., Chrungoo, N.K. Beyond the Cereal Box: Breeding Buckwheat as a Strategic Crop for Human Nutrition. Plant Foods Hum Nutr 76, 399–409 (2021). https://doi.org/10.1007/s11130-021-00930-7

Download citation

Keywords

  • Pseudocereals
  • Buckwheat
  • Genome-wide association study
  • Marker-assisted selection
  • Genomic selection
  • Genotyping by sequencing