Skip to main content

Functional Properties of Prickly Pear Cactus Fruit Peels Undergoing Supplemental Irrigation and Fruit Storage Conditions

Abstract

Prickly pear cactus fruit peels have been seen as organic waste. This study explored the effect of supplemental irrigation during fruit growth of ‘Roja Lisa’ (Opuntia ficus-indica) prickly pear cactus on the antioxidant, hypoglycemic and hypolipidemic properties of peel extracts from fruits collected at harvest and after storage conditions. The treatments were non-irrigated and supplemental irrigation and the storage conditions were cold or room temperature, and freshly harvested fruit. After each fruit quality evaluation, peels from each treatment combination were pooled and the concentrations of phenolic compounds, inhibition of an in vitro digestive enzyme, antioxidant capacity, and in vivo hypoglycemic (- control = 268 mg/dL versus fruit peel extracts = 204 mg/dL at 30 min) and hypolipidemic (- control = 203 mg/dL versus fruit peel extracts = 148 mg/dL at 30 min) properties were determined. Therefore, fruit peels could potentially be harnessed for human health benefits, instead of treated as organic waste.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data Availability

Additional information in the supplementary material.

References

  1. 1.

    Potgieter J, D’Aquino S (2017) Fruit production and post-harvest management. In: Inglese P, Mondragon C, Nefzaoui A, Sáenz C (eds) Crop ecology, cultivation and uses of cactus pear, 2nd edn. The Food and Agriculture Organization of the United Nations and the International Centre for Agricultural Research in the Dry Areas, Rome, pp 51–71

    Google Scholar 

  2. 2.

    SIAP (2021) Servicio de Información Agroalimentaria y Pesquera. https://www.gob.mx/siap. Accessed 7 Sept 2021

  3. 3.

    Bouazizi S, Montevecchi G, Antonelli A, Hamdi M (2020) Effects of prickly pear (Opuntia ficus-indica L.) peel flour as an innovative ingredient in biscuits formulation. LWT-Food Sci Technol 124:109155. https://doi.org/10.1016/j.lwt.2020.109155

  4. 4.

    De Wit M, Du Toit A, Osthoff G, Hugo A (2020) Antioxidant content, capacity and retention in fresh and processed cactus pear (Opuntia ficus-indica and O. robusta) fruit peels from different fruit-colored cultivars. Front Sustain Food Syst 4:133. https://doi.org/10.3389/fsufs.2020.00133

    Article  Google Scholar 

  5. 5.

    Díaz-Vela J, Totosaus A, Pérez-Chabela ML (2015) Integration of agroindustrial co-products as functional food ingredients: Cactus pear (Opuntia ficus indica) flour and pineapple (Ananas comosus) peel flour as fiber source in cooked sausages inoculated with lactic acid bacteria. J Food Process Preserv 39:2630–2638. https://doi.org/10.1111/jfpp.12513

    CAS  Article  Google Scholar 

  6. 6.

    Külen O, Stushnoff C, Holm DG (2013) Effect of cold storage on total phenolics content, antioxidant activity and vitamin C level of selected potato clones. J Sci Food Agric 93:2437–2444. https://doi.org/10.1002/jsfa.6053

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Cruz-Bravo RK, Guzmán-Maldonado SH, Araiza-Herrera HA, Zegbe JA (2019) Storage alters physicochemical characteristics, bioactive compounds and antioxidant capacity of cactus pear fruit. Postharvest Biol Technol 150:105–111. https://doi.org/10.1016/j.postharvbio.2019.01.001

    CAS  Article  Google Scholar 

  8. 8.

    Herrera MD, Acosta-Gallegos JA, Reynoso-Camacho R, Pérez-Ramírez IF (2019) Common bean seeds from plants subjected to severe drought, restricted- and full-irrigation regimes show differential phytochemical fingerprint. Food Chem 294:368–377. https://doi.org/10.1016/j.foodchem.2019.05.076

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    López-Romero P, Pichardo-Ontiveros E, Avila-Nava A, Vázquez-Manjarrez N, Tovar AR, Pedraza-Chaverri J, Torres N (2014) The effect of nopal (Opuntia ficus indica) on postprandial blood glucose, incretins, and antioxidant activity in mexican patients with type 2 diabetes after consumption of two different composition breakfasts. J Acad Nutr Diet 114:1811–1818. https://doi.org/10.1016/j.jand.2014.06.352

    Article  PubMed  Google Scholar 

  10. 10.

    Nuñez-López MA, Paredes-López O, Reynoso-Camacho R (2013) Functional and hypoglycemic properties of nopal cladodes (O. Ficus-indica) at different maturity stages using in vitro and in vivo tests. J Agric Food Chem 61:10981–10986. https://doi.org/10.1021/jf403834x

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Angulo-Bejarano PI, Gómez-García MdR, Valverde ME, Paredes-López O (2019) Nopal (Opuntia spp.) and its effects on metabolic syndrome: new insights for the use of a millenary plant. Curr Pharm Des 25:3457–3477. https://doi.org/10.2174/1381612825666191010171819

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Namir M, Elzahar K, Ramadan MF, Allaf K (2017) Cactus pear peel snacks prepared by instant pressure drop texturing: Effect of process variables on bioactive compounds and functional properties. J Food Meas Charact 11:388–400. https://doi.org/10.1007/s11694-016-9407-z

    Article  Google Scholar 

  13. 13.

    Parafati L, Restuccia C, Palmeri R, Fallico B, Arena E (2020) Characterization of prickly pear peel flour as a bioactive and functional ingredient in bread preparation. Foods 9:1189. https://doi.org/10.3390/foods9091189

    CAS  Article  PubMed Central  Google Scholar 

  14. 14.

    Aruwa CE, Amoo S, Kudanga T (2019) Phenolic compound profile and biological activities of Southern African Opuntia ficus-indica fruit pulp and peels. LWT-Food Sci Technol 111:337–344. https://doi.org/10.1016/j.lwt.2019.05.028

    CAS  Article  Google Scholar 

  15. 15.

    Albergaria ET, Oliveira AFM, Albuquerque UP (2020) The effect of water deficit stress on the composition of phenolic compounds in medicinal plants. S African J Bot 131:12–17. https://doi.org/10.1016/j.sajb.2020.02.002

    CAS  Article  Google Scholar 

  16. 16.

    Jiménez-Zamora A, Delgado-Andrade C, Rufián-Henares JA (2016) Antioxidant capacity, total phenols and color profile during the storage of selected plants used for infusion. Food Chem 199:339–346. https://doi.org/10.1016/j.foodchem.2015.12.019

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Sun R-Z, Cheng G, Li Q, He Y-N, Wang Y, Lan Y-B, Li S-Y, Zhu Y-R, Song W-F, Zhang X, Cui X-D, Chen W, Wang J (2017) Light-induced variation in phenolic compounds in cabernet sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Front Plant Sci 8:547. https://doi.org/10.3389/fpls.2017.00547

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Amaya-Cruz DM, Pérez-Ramírez IF, Delgado-García J, Mondragón-Jacobo C, Dector-Espinoza A, Reynoso-Camacho R (2019) An integral profile of bioactive compounds and functional properties of prickly pear (Opuntia ficus indica L.) peel with different tonalities. Food Chem 278:568–578. https://doi.org/10.1016/j.foodchem.2018.11.031

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Dufoo-Hurtado MD, Huerta-Ocampo JÁ, Barrera-Pacheco A, Barba de la Rosa AP, Mercado-Silva EM (2015) Low temperature conditioning of garlic (Allium sativum L.) “seed” cloves induces alterations in sprouts proteome. Front Plant Sci 6:332. https://doi.org/10.3389/fpls.2015.00332

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Yahia EM, Mondragon-Jacobo C (2011) Nutritional components and anti-oxidant capacity of ten cultivars and lines of cactus pear fruit (Opuntia spp.). Food Res Int 44:2311–2318. https://doi.org/10.1016/j.foodres.2011.02.042

    CAS  Article  Google Scholar 

  21. 21.

    Kårlund A, Moor U, Sandell M, Karjalainen RO (2014) The impact of harvesting, storage and processing factors on health-promoting phytochemicals in berries and fruits. Process 2:596–624. https://doi.org/10.3390/pr2030596

    CAS  Article  Google Scholar 

  22. 22.

    Herrera MD, Reynoso-Camacho R, Melero-Meraz V, Guzmán-Maldonado SH, Acosta-Gallegos JA (2021) Impact of soil moisture on common bean (Phaseolus vulgaris L.) phytochemicals. J Food Compos Ana 99:103883. https://doi.org/10.1016/j.jfca.2021.103883

    CAS  Article  Google Scholar 

  23. 23.

    Jagannathan R, Weber MB, Anjana RM, Ranjani H, Staimez LR, Ali MK, Mohan V, Narayan KMV (2020) Clinical utility of 30-min plasma glucose for prediction of type 2 diabetes among people with prediabetes: ancillary analysis of the diabetes community lifestyle improvement program. Diabetes Res Clin Pract 161:108075. https://doi.org/10.1016/j.diabres.2020.108075

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Zakłos-Szyda M, Pawlik N, Polka D, Nowak A, Koziołkiewicz M, Podsędek A (2019) Viburnum opulus fruit phenolic compounds as cytoprotective agents able to decrease free fatty acids and glucose uptake by caco-2 cells. Antioxidants 8:262. https://doi.org/10.3390/antiox8080262

    CAS  Article  PubMed Central  Google Scholar 

  25. 25.

    Berraaouan A, Ziyyat A, Mekhfi H, Legssyer A, Sindic M, Aziz M, Bnouham M (2014) Evaluation of antidiabetic properties of cactus pear seed oil in rats. Pharm Biol 52:1286–1290. https://doi.org/10.3109/13880209.2014.890230

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Godard MP, Ewing BA, Pischel I, Ziegler A, Benedek B, Feistel B (2010) Acute blood glucose lowering effects and long-term safety of OpunDiaTM supplementation in pre-diabetic males and females. J Ethnopharmacol 130:631–634. https://doi.org/10.1016/j.jep.2010.05.047

    Article  PubMed  Google Scholar 

  27. 27.

    el Imane HN, Louala S, Bensalah F, Affane F, Chekkal H, Lamri-Senhadji M (2019) Anti-hypertensive, anti-diabetic, hypocholesterolemic and antioxidant properties of prickly pear nopalitos in type 2 diabetic rats fed a high-fat diet. Nutr Food Sci 49:476–490. https://doi.org/10.1108/NFS-06-2018-0169

    Article  Google Scholar 

  28. 28.

    Urquiza-Martínez MV, Martínez-Flores HE, Guzmán-Quevedo O, Tosacano AE, Manhães de Castro R, Torner L, Mercado-Camargo R, Pérez-Sánchez RE, Bartolome-Camacho MC (2020) Addition of Opuntia ficus-indica Reduces Hypothalamic Microglial Activation and Improves Metabolic Alterations in Obese Mice Exposed to a High-fat Diet. J Food Nutr Res 8:473–483. https://doi.org/10.12691/jfnr-8-9-4

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors want to acknowledge Mr. Jesús Álvarez-Gómez, the owner of the prickly pear cactus orchard, for allowing us to set up the experiment and fruit sampling. We thank Dr Mary Lou Mendum (University of California, Davis, CA, USA) for improving the presentation of this document. We appreciate the valuable comments and suggestions from the Editor and the Reviewers.

Funding

This work was supported by the National Institute of Forestry, Agriculture and Livestock Research (INIFAP), grant No. SIGI: 8403134459 to Jorge A. Zegbe.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Zegbe.

Ethics declarations

Conflict of Interests

Authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1

(DOCX 23 kb)

Supplementary file2

(DOCX 27 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herrera, M.D., Zegbe, J.A., Melero-Meraz, V. et al. Functional Properties of Prickly Pear Cactus Fruit Peels Undergoing Supplemental Irrigation and Fruit Storage Conditions. Plant Foods Hum Nutr (2021). https://doi.org/10.1007/s11130-021-00927-2

Download citation

Keywords

  • Opuntia ficus-indica
  • Bioactive compounds
  • Phytochemicals