Skip to main content

In vitro Bioaccessibility of Proteins, Phenolics, Flavonoids and Antioxidant Activity of Amaranthus viridis

Abstract

The aim of this study was to investigate the chemical composition, mineral content and report the effect of gastrointestinal digestion on the proteins, phenolics, flavonoids and antioxidant activity of morphological parts of Amaranthus viridis (AV). The macronutrients found in the greatest quantity were proteins (leave, inflorescence and seeds) and fiber (roots and stem). The main minerals were calcium, potassium, iron and zinc. All the plant parts showed total phenolic (TPC) and total flavonoid (TFC) compounds that were correlated with antioxidant capacity (DPPH, ABTS and FRAP); the leaves and inflorescence presented the greatest potential. The antioxidant compounds from the leaves, inflorescence and roots decreased after static in vitro digestion, while the TPC and TFC of the digested seeds increased by more than 55%. Approximately 90% of the protein content was bioaccessible. To the best of our knowledge, for the first time, the bioaccessibility of proteins, phenolics, flavonoids and antioxidant activity of the leave, inflorescence, seeds, roots and stem from AV were reported. Taking into consideration the excellent nutritional properties, the morphological parts of the plant can be potentially explored as a source of protein, fiber, minerals and antioxidant compounds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. 1.

    Peter K, Gandhi P (2017) Rediscovering the therapeutic potential of Amaranthus species: a review. Egypt J Basic Appl Sci 4:196–205. https://doi.org/10.1016/j.ejbas.2017.05.001

    Article  Google Scholar 

  2. 2.

    Sarker U, Oba S (2018) Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Appl Biochem Biotechnol 186:999–1016. https://doi.org/10.1007/s12010-018-2784-5

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Sarker U, Oba S (2019) Salinity stress enhances color parameters, bioactive leaf pigments, vitamins, polyphenols, flavonoids and antioxidant activity in selected Amaranthus leafy vegetables. J Sci Food Agric 99:2275–2284. https://doi.org/10.1002/jsfa.9423

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Adegbola PI, Adetutu A, Olaniyi TD (2020) Antioxidant activity of Amaranthus species from the Amaranthaceae family – a review. South African J Bot 133:111–117. https://doi.org/10.1016/j.sajb.2020.07.003

    CAS  Article  Google Scholar 

  5. 5.

    Datta S, Sinha BK, Bhattacharjee S, Seal T (2019) Nutritional composition, mineral content, antioxidant activity and quantitative estimation of water soluble vitamins and phenolics by RP-HPLC in some lesser used wild edible plants. Heliyon 5:1–37. https://doi.org/10.1016/j.heliyon.2019.e01431

    Article  Google Scholar 

  6. 6.

    Tang Y, Li X, Chen PX et al (2016) Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. J Agric Food Chem 64:1103–1110. https://doi.org/10.1021/acs.jafc.5b05414

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Jiménez-Aguilar DM, Grusak MA (2017) Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. J Food Compos Anal 58:33–39. https://doi.org/10.1016/j.jfca.2017.01.005

    CAS  Article  Google Scholar 

  8. 8.

    Bessada SMF, Barreira JCM, Oliveira MBPP (2019) Pulses and food security: dietary protein, digestibility, bioactive and functional properties. Trends Food Sci Technol 93:53–68. https://doi.org/10.1016/j.tifs.2019.08.022

    CAS  Article  Google Scholar 

  9. 9.

    Sá AGA, Moreno YMF, Carciofi BAM (2020) Plant proteins as high-quality nutritional source for human diet. Trends Food Sci Technol 97:170–184. https://doi.org/10.1016/j.tifs.2020.01.011

    CAS  Article  Google Scholar 

  10. 10.

    Sánchez-Quezada V, Campos-Vega R, Loarca-Piña G (2021) Prediction of the physicochemical and nutraceutical characteristics of ‘Hass’ avocado seeds by correlating the physicochemical avocado fruit properties according to their ripening state. Plant Foods Hum Nutr 76:311–318. https://doi.org/10.1007/s11130-021-00900-z

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    DuBois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    CAS  Article  Google Scholar 

  12. 12.

    Pellegrini M, Lucas-Gonzalez R, Sayas-Barberá E et al (2018) Bioaccessibility of phenolic compounds and antioxidant capacity of chia (Salvia hispanica L.) seeds. Plant Foods Hum Nutr 73:47–53. https://doi.org/10.1007/s11130-017-0649-7

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Turola Barbi RC, Silveira Hornung P, Ávila S et al (2020) Ripe and unripe inajá (Maximilia maripa) fruit: a new high source of added value bioactive compounds. Food Chem 331:1–34. https://doi.org/10.1016/j.foodchem.2020.127333

    CAS  Article  Google Scholar 

  14. 14.

    Goltz C, Ávila S, Barbieri JB et al (2018) Ultrasound-assisted extraction of phenolic compounds from Macela (Achyrolcine satureioides) extracts. Ind Crops Prod 115:227–234. https://doi.org/10.1016/j.indcrop.2018.02.013

    CAS  Article  Google Scholar 

  15. 15.

    Minekus M, Alminger M, Alvito P et al (2014) A standardised static in vitro digestion method suitable for food-an international consensus. Food Funct 5:1113–1124. https://doi.org/10.1039/c3fo60702j

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Câmara AKFI, Geraldi MV, Okuro PK et al (2020) Satiety and in vitro digestibility of low saturated fat Bologna sausages added of chia mucilage powder and chia mucilage-based emulsion gel. J Funct Foods 65:1–10. https://doi.org/10.1016/j.jff.2019.103753

    CAS  Article  Google Scholar 

  17. 17.

    Jung SY, Lee SJ, Park H (2020) Investigation of water transport around the root for a plant using X-ray imaging technique. Measurement 151:1–10. https://doi.org/10.1016/j.measurement.2019.107159

    Article  Google Scholar 

  18. 18.

    Awolu OO, Osemeke RO, Ifesan BOT (2016) Antioxidant, functional and rheological properties of optimized composite flour, consisting wheat and amaranth seed, brewers’ spent grain and apple pomace. J Food Sci Technol 53:1151–1163. https://doi.org/10.1007/s13197-015-2121-8

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Bojórquez-Velázquez E, Velarde-Salcedo AJ, De L-Rodríguez A et al (2018) Morphological, proximal composition, and bioactive compounds characterization of wild and cultivated amaranth ( Amaranthus spp.) species. J Cereal Sci 83:222–228. https://doi.org/10.1016/j.jcs.2018.09.004

    CAS  Article  Google Scholar 

  20. 20.

    Pereira E, Encina-Zelada C, Barros L et al (2019) Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: a good alternative to nutritious food. Food Chem 280:110–114. https://doi.org/10.1016/j.foodchem.2018.12.068

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Martinez-Lopez A, Millan-Linares MC, Rodriguez-Martin NM et al (2020) Nutraceutical value of kiwicha (Amaranthus caudatus L.). J Funct Foods 65:1–13. https://doi.org/10.1016/j.jff.2019.103735

    CAS  Article  Google Scholar 

  22. 22.

    Low DY, Pluschke AM, Gerrits WJJ et al (2020) Cereal dietary fibres influence retention time of digesta solid and liquid phases along the gastrointestinal tract. Food Hydrocoll 104:1–8. https://doi.org/10.1016/j.foodhyd.2020.105739

    CAS  Article  Google Scholar 

  23. 23.

    Lattimer JM, Haub MD (2010) Effects of dietary fiber and its components on metabolic health. Nutrients 2:1266–1289. https://doi.org/10.3390/nu2121266

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Kachiguma NA, Mwase W, Maliro M, Damaliphetsa A (2015) Chemical and mineral composition of amaranth (Amaranthus L.) species collected from Central Malawi. J Food Res 4:92–102. https://doi.org/10.5539/jfr.v4n4p92

    CAS  Article  Google Scholar 

  25. 25.

    Chakrabarty T, Sarker U, Hasan M, Rahman MM (2018) Variability in mineral compositions, yield and yield contributing traits of stem amaranth (Amaranthus lividus). Genetika 50:995–1010. https://doi.org/10.2298/GENSR1803995C

    Article  Google Scholar 

  26. 26.

    Bordoloi M, Bordoloi PK, Dutta PP et al (2016) Studies on some edible herbs: antioxidant activity, phenolic content, mineral content and antifungal properties. J Funct Foods 23:220–229. https://doi.org/10.1016/j.jff.2016.02.028

    CAS  Article  Google Scholar 

  27. 27.

    Li H, Deng Z, Liu R et al (2015) Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J Food Compos Anal 37:75–81. https://doi.org/10.1016/j.jfca.2014.09.003

    CAS  Article  Google Scholar 

  28. 28.

    Hejazi SN, Orsat V, Azadi B, Kubow S (2016) Improvement of the in vitro protein digestibility of amaranth grain through optimization of the malting process. J Cereal Sci 68:59–65. https://doi.org/10.1016/j.jcs.2015.11.007

    CAS  Article  Google Scholar 

  29. 29.

    Rodríguez M, García Fillería SF, Tironi VA (2020) Simulated gastrointestinal digestion of amaranth flour and protein isolate: comparison of methodologies and release of antioxidant peptides. Food Res Int 138:1–10. https://doi.org/10.1016/j.foodres.2020.109735

    CAS  Article  Google Scholar 

  30. 30.

    Liu G, Gilding EK, Kerr ED et al (2019) Increasing protein content and digestibility in sorghum grain with a synthetic biology approach. J Cereal Sci 85:27–34. https://doi.org/10.1016/j.jcs.2018.11.001

    CAS  Article  Google Scholar 

  31. 31.

    Kuster VC, da Silva LC, Meira RMSA, Azevedo AA (2018) Structural adaptation and anatomical convergence in stems and roots of five plant species from a “Restinga” sand coastal plain. Flora Morphol Distrib Funct Ecol Plants 243:77–87. https://doi.org/10.1016/j.flora.2018.03.017

    Article  Google Scholar 

  32. 32.

    Liu S, Constable G, Stiller W (2020) Using leaf sodium concentration for screening sodicity tolerance in cotton (Gossypium hirsutum L.). F Crop Res 246:107678. https://doi.org/10.1016/j.fcr.2019.107678

    Article  Google Scholar 

  33. 33.

    Navarro A, Bañon S, Olmos E, Sánchez-Blanco MJ (2007) Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Sci 172:473–480. https://doi.org/10.1016/j.plantsci.2006.10.006

    CAS  Article  Google Scholar 

  34. 34.

    Song T, Xu F, Yuan W et al (2019) Combining alternate wetting and drying irrigation with reduced phosphorus fertilizer application reduces water use and promotes phosphorus use efficiency without yield loss in rice plants. Agric Water Manag 223:1–12. https://doi.org/10.1016/j.agwat.2019.105686

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Paraná Reference Center for Agroecology of Paraná (CPRA-PR) for donating the plants. This work was supported by Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES) for the financial support and the master scholarship awarded to A.D. Silva (grant number 888823830003/2019-01) and postdoctoral fellowships awarded to S. Ávila (grant number 88887371865/2019-00).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alisson David Silva.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, A.D., Ávila, S., Küster, R.T. et al. In vitro Bioaccessibility of Proteins, Phenolics, Flavonoids and Antioxidant Activity of Amaranthus viridis. Plant Foods Hum Nutr (2021). https://doi.org/10.1007/s11130-021-00924-5

Download citation

Keywords

  • Amaranthus
  • Nutrient
  • Minerals
  • Digestibility
  • Antioxidant compounds
  • Morphological parts