Skip to main content
Log in

Affinity-Guided Isolation and Identification of Procyanidin B2 from Mangosteen (Garcinia mangostana L.) Rinds and its In Vitro LPS Binding and Neutralization Activities

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Garcinia mangostana L. (mangosteen) is a tropical fruit that has been used for medicinal purposes in Southeast Asia for centuries. With an interest in its applications to treat infection, we sought to investigate the bioactive constituents of mangosteen and identified the phenolic compound procyanidin B2 from the mangosteen pericarp by examining lipopolysaccharide (LPS) binding capacity. The LPS binding and neutralization activities of procyanidin B2 were determined by a combination of biophysical and in silico techniques. The affinity of procyanidin B2 to LPS was 1.61 × 10–5 M. Procyanidin B2 significantly neutralized LPS and selectively inhibited the LPS-induced release of tumor necrosis factor (TNF)-α from RAW264.7 cells in a dose-dependent manner. Binding thermodynamics revealed favorable hydrogen bonding and hydrophobic interactions between procyanidin B2 and LPS. Molecular simulations suggested that hydrogen bonding and hydrophobic interactions were involved in the binding process. These findings have, for the first time, shed light on the anti-inflammatory properties of procyanidin B2 through LPS binding and neutralization and provided a promising lead for the development of antiendotoxin agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets supporting the conclusions of this article are included within the article.

Abbreviations

LPS:

Lipopolysaccharide

PMB:

Polymyxin B

ITC:

Isothermal titration calorimetry

TNF-α :

Tumor necrosis factor-α

HPLC:

High performance liquid chromatography

LC–ESI–MS:

Liquid chromatography-electrospray ionization-mass spectrometry

PBS:

Phosphate-buffered saline

ELISA:

Enzyme-linked immunosorbent assay

MTT:

Methyl thiazolyl tetrazolium

KDO:

3-deoxy-D-manno-octulosonate

References

  1. Ovalle-Magallanes B, Eugenio-Pérez D, Pedraza-Chaverri J (2017) Medicinal properties of mangosteen (Garcinia mangostana L.): a comprehensive update. Food Chem Toxicol 109:102–122. https://doi.org/10.1016/j.fct.2017.08.021

    Article  CAS  PubMed  Google Scholar 

  2. Gutierrez-Orozco F, Failla ML (2013) Biological activities and bioavailability of mangosteen xanthones: a critical review of the current evidence. Nutrients 5:3163–3183. https://doi.org/10.3390/nu5083163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Obolskiy D, Pischel I, Siriwatanametanon N, Heinrich M (2009) Garcinia mangostana L.: a phytochemical and pharmacological review. Phytother Res 23:1047–1065. https://doi.org/10.1002/ptr.2730

    Article  CAS  PubMed  Google Scholar 

  4. Benatrehina PA, Pan L, Naman CB, Li J, Kinghorn AD (2018) Usage, biological activity, and safety of selected botanical dietary supplements consumed in the United States. J Tradit Complement Med 8:267–277. https://doi.org/10.1016/j.jtcme.2018.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tang YP, Li PG, Kondo M, Ji HP, Kou Y, Ou B (2009) Effect of a mangosteen dietary supplement on human immune function: a randomized, double-blind, placebo-controlled trial. J Med Food 12:755–763. https://doi.org/10.1089/jmf.2008.0204

    Article  CAS  PubMed  Google Scholar 

  6. Kondo M, Zhang L, Ji H, Kou Y, Ou B (2009) Bioavailability and antioxidant effects of a xanthone-rich Mangosteen (Garcinia mangostana) product in humans. J Agric Food Chem 57:8788–8792. https://doi.org/10.1021/jf901012f

    Article  CAS  PubMed  Google Scholar 

  7. Xie Z, Sintara M, Chang T, Ou B (2015) Daily consumption of a mangosteen-based drink improves in vivo antioxidant and anti-inflammatory biomarkers in healthy adults: a randomized, double-blind, placebo-controlled clinical trial. Food Sci Nutr 3:342–348. https://doi.org/10.1002/fsn3.225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shan T, Ma Q, Guo K, Liu J, Li W, Wang F, Wu E (2011) Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. Curr Mol Med 11:666–677. https://doi.org/10.2174/156652411797536679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Watanabe M, Gangitano E, Francomano D, Addessi E, Toscano R, Costantini D, Tuccinardi D, Mariani S, Basciani S, Spera G, Gnessi L, Lubrano C (2018) Mangosteen extract shows a potent insulin sensitizing effect in obese female patients: a prospective randomized controlled pilot study. Nutrients 10:586. https://doi.org/10.3390/nu10050586

    Article  CAS  PubMed Central  Google Scholar 

  10. TousianShandiz H, Razavi BM, Hosseinzadeh H (2017) Review of Garcinia mangostana and its xanthones in metabolic syndrome and related complications. Phytother Res 31:1173–1182. https://doi.org/10.1002/ptr.5862

    Article  CAS  Google Scholar 

  11. Sakagami Y, Iinuma M, Piyasena KG, Dharmaratne HR (2005) Antibacterial activity of alpha-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine 12:203–208. https://doi.org/10.1016/j.phymed.2003.09.012

    Article  CAS  PubMed  Google Scholar 

  12. Xinchuan Z, Xiuying X, Shanquan F, Yimin Z (2011) Study on anti-lipopolysaccharide compounds from Garcinia mangostana L. J C Univ Technol 25:33–39. https://doi.org/10.3969/j.issn.1674-8425-B.2011.04.007

    Article  Google Scholar 

  13. Jiang Z, Hong Z, Guo W, Xiaoyun G, Gengfa L, Yongning L, Guangxia X (2004) A synthetic peptide derived from bactericidal/permeability-increasing protein neutralizes endotoxin in vitro and in vivo. Int Immunopharmacol 4:527–537. https://doi.org/10.1016/j.intimp.2004.02.004

    Article  CAS  PubMed  Google Scholar 

  14. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodríguez-Morgado B, Candiracci M, Santa-María C, Revilla E, Gordillo B, Parrado J, Castaño A (2015) Obtaining from grape pomace an enzymatic extract with anti-inflammatory properties. Plant Foods Hum Nutr 70:42–49. https://doi.org/10.1007/s11130-014-0459-0

    Article  CAS  PubMed  Google Scholar 

  16. Fourati M, Smaoui S, Hlima HB, Elhadef K, Braïek OB, Ennouri K, Mtibaa AC, Mellouli L (2020) Bioactive compounds and pharmacological potential of pomegranate (Punica granatum) seeds - a review. Plant Foods Hum Nutr 75:477–486. https://doi.org/10.1007/s11130-020-00863-7

    Article  PubMed  Google Scholar 

  17. Zhang WY, Liu HQ, Xie KQ, Yin LL, Li Y, Kwik-Uribe CL, Zhu XZ (2006) Procyanidin dimer B2 [epicatechin-(4beta-8)-epicatechin] suppresses the expression of cyclooxygenase-2 in endotoxin-treated monocytic cells. Biochem Biophys Res Commun 345:508–515. https://doi.org/10.1016/j.bbrc.2006.04.085

    Article  CAS  PubMed  Google Scholar 

  18. Thomas CJ, Surolia A (1999) Kinetics of the interaction of endotoxin with polymyxin B and its analogs: a surface plasmon resonance analysis. FEBS Lett 445:420–424. https://doi.org/10.1016/s0014-5793(99)00150-7

    Article  CAS  PubMed  Google Scholar 

  19. Howe J, Andrä J, Conde R, Iriarte M, Garidel P, Koch MH, Gutsmann T, Moriyón I, Brandenburg K (2007) Thermodynamic analysis of the lipopolysaccharide-dependent resistance of gram-negative bacteria against polymyxin B. Biophys J 92:2796–2805. https://doi.org/10.1529/biophysj.106.095711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mares J, Kumaran S, Gobbo M, Zerbe O (2009) Interactions of lipopolysaccharide and polymyxin studied by NMR spectroscopy. J Biol Chem 284:11498–11506. https://doi.org/10.1074/jbc.M806587200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (grant No.: 81803394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinchuan Zheng.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 269 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Yang, Y., Lu, Y. et al. Affinity-Guided Isolation and Identification of Procyanidin B2 from Mangosteen (Garcinia mangostana L.) Rinds and its In Vitro LPS Binding and Neutralization Activities. Plant Foods Hum Nutr 76, 442–448 (2021). https://doi.org/10.1007/s11130-021-00920-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-021-00920-9

Keywords

Navigation