Skip to main content

Supplementation with Phaseolus vulgaris Leaves Improves Metabolic Alterations Induced by High-Fat/Fructose Diet in Rats Under Time-Restricted Feeding

Abstract

Time-restricted feeding and food enriched in polyphenols are strategies to prevent or reduce metabolic disorders. Bean leaves (Phaseolus vulgaris L.) are a recognized source of polyphenolic compounds, whose effects on metabolic pathways are not well studied. We evaluated the combined effects of dietary supplementation with Phaseolus vulgaris leaves (10% w/w) (BL) and a 7-h daytime-restricted feeding protocol (RF) under a hypercaloric diet (high fat + high fructose) (HFFD) on the metabolic parameters related to glucose and lipid handling. Adult male Wistar rats were treated for 8 weeks with standard and HFFD diets with or without BL. The results showed that RF improved metabolic alterations induced by HFFD (e.g., hepatic steatosis, increased triacylglycerols, and serum lipoproteins). Supplementation with BL significantly enhanced this effect and downregulated the mRNA expression of carbohydrate and lipid metabolism genes in the liver. These results indicate that dietary supplementation with BL enhances the benefits elicited by RF.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

Acc:

Acetyl-CoA carboxylase

BL:

Bean leaves

Fas:

Fatty acid synthase

G6pase:

Glucose-6-phosphatase

G6pd:

Glucose-6-phosphate dehydrogenase

Gk:

Glucokinase

HDL:

High-density lipoprotein

HFFD:

High fat + high fructose diet

HOMA-IR:

Homeostatic Model Assessment for Insulin Resistance

LDL:

Low-density lipoprotein

Pepck:

Phosphoenolpyruvate carboxykinase

Pklr:

Pyruvate kinase

RF:

Restricted feeding

Scd1:

Stearoyl-CoA desaturase-1

SD:

Standard diet

TAG:

Triacylglycerides

VLDL:

Very-low-density lipoprotein

References

  1. 1.

    Vileigas DF, Marciano CLC, Mota GAF et al (2019) Temporal measures in cardiac structure and function during the development of obesity induced by different types of western diet in a rat model. Nutrients 12:68. https://doi.org/10.3390/nu12010068

    CAS  Article  PubMed Central  Google Scholar 

  2. 2.

    Hatori M, Vollmers C, Zarrinpar A et al (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15:848–860. https://doi.org/10.1016/j.cmet.2012.04.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Chaix A, Lin T, Le HD et al (2019) Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab 29:303-319.e4. https://doi.org/10.1016/j.cmet.2018.08.004

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Hay E, Lucariello A, Contieri M et al (2019) Therapeutic effects of turmeric in several diseases: an overview. Chem Biol Interact 310:108729. https://doi.org/10.1016/j.cbi.2019.108729

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Zeni ALB, Moreira TD, Dalmagro AP et al (2017) Evaluation of phenolic compounds and lipid-lowering effect of Morus nigra leaves extract. An Acad Bras Cienc 89:2805–2815. https://doi.org/10.1590/0001-3765201720160660

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Donado-Pestana CM, Dos Santos-Donado PR, Daza LD et al (2018) Cagaita fruit (Eugenia dysenterica DC.) and obesity: role of polyphenols on already established obesity. Food Res Int 103:40–47. https://doi.org/10.1016/j.foodres.2017.10.011

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ganesan K, Xu B (2017) Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. Int J Mol Sci 18:2331. https://doi.org/10.3390/ijms18112331

    CAS  Article  PubMed Central  Google Scholar 

  8. 8.

    Quiroz-Sodi M, Mendoza-Díaz S, Hernández-Sandoval L et al (2018) Characterization of the secondary metabolites in the seeds of nine native bean varieties (Phaseolus vulgaris and P. Coccineus) from Querétaro, Mexico. Bot Sci 96:650–661. https://doi.org/10.17129/botsci.1930

  9. 9.

    Wortmann CS, Kirkby RA, Eledu CA et al (1998) Atlas of common bean (Phaseolus vulgaris L.) production in Africa. Centro Internacional de Agricultura Tropical (CIAT), Cali, CO. p. 131 (CIAT publication no. 297)

  10. 10.

    Martínez-Zavala M, Mora-Avilés MA, Anaya-Loyola MA et al (2016) Common bean leaves as a source of dietary iron: functional test in an iron-deficient rat model. Plant Foods Hum Nutr 71:259–264. https://doi.org/10.1007/s11130-016-0554-5

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Layman JI, Pereira DL, Chellan N et al (2019) A histomorphometric study on the hepatoprotective effects of a green rooibos extract in a diet-induced obese rat model. Acta Histochem 121:646–656. https://doi.org/10.1016/j.acthis.2019.05.008

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Kumar N, Goel N (2019) Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnol Rep (Amst) 24:e00370. https://doi.org/10.1016/j.btre.2019.e00370

    Article  Google Scholar 

  13. 13.

    Sun S, Hanzawa F, Kim D et al (2019) Circadian rhythm–dependent induction of hepatic lipogenic gene expression in rats fed a high-sucrose diet. J Biol Chem 294:15206–15217. https://doi.org/10.1074/jbc.RA119.010328

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Gabbia D, Roverso M, Guido M et al (2019) Western diet-induced metabolic alterations affect circulating markers of liver function before the development of steatosis. Nutrients 11:1602. https://doi.org/10.3390/nu11071602

    CAS  Article  PubMed Central  Google Scholar 

  15. 15.

    Millar CL, Duclos Q, Blesso CN (2017) Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function. Adv Nutr 8:226–239. https://doi.org/10.3945/an.116.014050

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lee S, Lee J, Lee H et al (2019) Relative protective activities of quercetin, quercetin-3-glucoside, and rutin in alcohol-induced liver injury. J Food Biochem 43:e13002. https://doi.org/10.1111/jfbc.13002

    Article  PubMed  Google Scholar 

  17. 17.

    Yang L, Li XF, Gao L et al (2012) Suppressive effects of quercetin-3-O-(6″-Feruloyl)-β-D-galactopyranoside on adipogenesis in 3T3-L1 preadipocytes through down-regulation of PPARγ and C/EBPα expression. Phytother Res 26:438–444. https://doi.org/10.1002/ptr.3604

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Ramalingam S, Karuppiah M, Thiruppathi M et al (2020) Antioxidant potential of biflavonoid attenuates hyperglycemia by modulating the carbohydrate metabolic enzymes in high fat diet/streptozotocin induced diabetic rats. Redox Rep 25:1–10. https://doi.org/10.1080/13510002.2020.1722914

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Wu T, Guo Y, Liu R et al (2016) Black tea polyphenols and polysaccharides improve body composition, increase fecal fatty acid, and regulate fat metabolism in high-fat diet-induced obese rats. Food Funct 7:2469–2478. https://doi.org/10.1039/C6FO00401F

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Aguilar-Roblero R, Díaz-Muñoz M (2010) Chronostatic adaptations in the liver to restricted feeding: the FEO as an emergent oscillator. Sleep Biol Rhythms 8:9–17. https://doi.org/10.1111/j.1479-8425.2009.00415.x

    Article  Google Scholar 

  21. 21.

    García-Gaytán AC, Miranda-Anaya M, Turrubiate I et al (2020) Synchronization of the circadian clock by time-restricted feeding with progressive increasing calorie intake. Resemblances and differences regarding a sustained hypocaloric restriction. Sci Rep 10:10036. https://doi.org/10.1038/s41598-020-66538-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Ding S, Jiang J, Zhang G et al (2017) Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats. PLoS One 12:e0183541. https://doi.org/10.1371/journal.pone.0183541

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kim Y, Keogh JB, Clifton PM (2016) Polyphenols and glycemic control. Nutrients 8:17. https://doi.org/10.3390/nu8010017

    CAS  Article  PubMed Central  Google Scholar 

  24. 24.

    Lee Y, Kim EK (2013) AMP-activated protein kinase as a key molecular link between metabolism and clockwork. Exp Mol Med 45:e33. https://doi.org/10.1038/emm.2013.65

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jéssica González Norris for assistance with the English version of this manuscript, and Dr. Christian Molina Aguilar, Dr. Aracely Anaya-Loyola, Nut. Sonia Hernández-Nájera, Nut. Fernando López-Barrera, Lilia Ruíz-Garduño, Biol. Josué López-Martínez, Ing. Nydia Hernández-Ríos, and Nut. Adriana Becerril-Campos for their technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Luna-Moreno.

Ethics declarations

Conflict of Interest

The authors declare that are no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 57 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Venegas, G., De Ita-Pérez, D., Díaz-Muñoz, M. et al. Supplementation with Phaseolus vulgaris Leaves Improves Metabolic Alterations Induced by High-Fat/Fructose Diet in Rats Under Time-Restricted Feeding. Plant Foods Hum Nutr 76, 297–303 (2021). https://doi.org/10.1007/s11130-021-00904-9

Download citation

Keywords

  • Phaseolus vulgaris
  • Bean leaves
  • Restricted feeding
  • Metabolic alterations
  • High-fat/fructose diet