Skip to main content

Metabolite Profiling of Rosemary Cell Lines with Antiproliferative Potential against Human HT-29 Colon Cancer Cells

Abstract

Rosemary (Rosmarinus officinalis) is a culinary and medicinal plant used in food and pharmaceutical industry. The wide range of biological activities is mainly related to phenolic and terpenic compounds; like carnosic acid (CA), carnosol (CS) and rosmarinic acid (RA), mainly reported in rosemary leaf extracts, and recently described in rosemary callus extracts. The aim of this work was to investigate the chemical profile of rosemary cell lines and evaluate their antiproliferative potential against human HT-29 colorectal cancer cell lines. For this purpose, rosemary leaf explants were dedifferentiated on MS medium and added with 2, 4-D (2, 4-dichlorophenoxyacetic acid; 2 mg/L) and BAP (6-benzylaminopurine; 2 mg/L). Cell aggregates were separated according to colour and three rosemary cell lines cultures were established: green (RoG), yellow (RoY) and white (RoW). The chemical profile of rosemary cell lines extracts was characterized by combining HPLC and GC platforms coupled to HR-MS/MS. The antiproliferative activity against HT-29 cell line was analyzed with MTT assay. A total of 71 compounds, including hydroxycinnamic acid and hydroxybenzoic acid derivatives, flavonoids, phenolic di- and triterpenes, as well as relevant unsaturated fatty acids and their esters, phytosterols, and carotenoids were tentatively identified in the extract of the target cell lines. The antiproliferative activity test against HT-29 cell using the MTT assay revealed that the viability of HT-29 colon cancer cells was affected after treatment with the RoW extract (IC50 of 49.63 μg/mL) at 48 h. These results showed that rosemary cell lines can also accumulate other bioactive phytochemicals with demonstrated antiproliferative potential.

This is a preview of subscription content, access via your institution.

Fig. 1 
Fig. 2
Fig. 3

References

  1. 1.

    Sánchez-Camargo AP, Herrero M (2017) Rosemary (Rosmarinus officinalis) as a functional ingredient: recent scientific evidence. Curr Opin Food Sci 14:13–19. https://doi.org/10.1016/j.cofs.2016.12.003

    Article  Google Scholar 

  2. 2.

    Ghasemzadeh MR, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H (2016) Effect of alcoholic extract of aerial parts of Rosmarinus officinalis L. on pain, inflammation and apoptosis induced by chronic constriction injury (CCI) model of neuropathic pain in rats. J Ethnopharmacol 194:117–130. https://doi.org/10.1016/j.jep.2016.08.043

    Article  PubMed  Google Scholar 

  3. 3.

    Karadağ AE, Demirci B, Çaşkurlu A, Demirci F, Okur ME, Orak D, Sipahi H, Başer KHC (2019) In vitro antibacterial, antioxidant, anti-inflammatory and analgesic evaluation of Rosmarinus officinalis L. flower extract fractions. S Afr J Bot 125:214–220. https://doi.org/10.1016/j.sajb.2019.07.039

    CAS  Article  Google Scholar 

  4. 4.

    Sedighi R, Zhao Y, Yerke A, Sang S (2015) Preventive and protective properties of rosemary (Rosmarinus officinalis L.) in obesity and diabetes mellitus of metabolic disorders: a brief review. Curr Opin Food Sci 2:58–70. https://doi.org/10.1016/j.cofs.2015.02.002

    Article  Google Scholar 

  5. 5.

    Valdés A, Cifuentes A, León C (2017) Foodomics evaluation of bioactive compounds in foods. TrAC Trends Anal Chem 96:2–13. https://doi.org/10.1016/j.trac.2017.06.004

    CAS  Article  Google Scholar 

  6. 6.

    Valdés A, Artemenko K, Bergquist J et al (2016) Comprehensive proteomic study of the antiproliferative activity of a polyphenol-enriched rosemary extract on colon cancer cells using nanoliquid chromatography–orbitrap MS/MS. J Proteome Res 15(6):1971–1985. https://doi.org/10.1021/acs.jproteome.6b00154

  7. 7.

    Valdés A, García-Cañas V, Simó C, Ibáñez C, Micol V, Ferragut JA, Cifuentes A (2014) Comprehensive foodomics study on the mechanisms operating at various molecular levels in cancer cells in response to individual rosemary polyphenols. Anal Chem 86(19):9807–9815. https://doi.org/10.1021/ac502401j

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Adil M, Haider Abbasi B, Ul Haq I (2019) Red light controlled callus morphogenetic patterns and secondary metabolites production in Withania somnifera L. Biotechnol Rep (Amst) 24:e00380. https://doi.org/10.1016/j.btre.2019.e00380

    Article  Google Scholar 

  9. 9.

    Espinosa-Leal CA, Puente-Garza CA, García-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248:1–18. https://doi.org/10.1007/s00425-018-2910-1

  10. 10.

    Collin HA, Dix PJ (1990) Culture systems and selection procedures. In: Dix PJ (ed) Plant cell line selection: procedures and applications. VCH Publishers Inc, New York, pp 3–18

  11. 11.

    Efferth T (2019) Biotechnology applications of plant callus cultures. Engineering 5(1):50–59. https://doi.org/10.1016/j.eng.2018.11.006

    CAS  Article  Google Scholar 

  12. 12.

    Ramachandra RS, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153. https://doi.org/10.1016/S0734-9750(02)00007-1

  13. 13.

    Boix YF, Arruda RCO, Defaveri ACA, Sato A, Lage CLS, Victo´rio CP (2013) Callus in Rosmarinus officinalis L. (Lamiaceae): a morphoanatomical, histochemical and volatile analysis. Plant Biosyst 147(3):751–757. https://doi.org/10.1080/11263504.2012.751067

    Article  Google Scholar 

  14. 14.

    Coskun Y, Duran RE, Kilic S (2019) Striking effects of melatonin on secondary metabolites produced by callus culture of rosemary (Rosmarinus officinalis L.). Plant Cell Tiss Org 138(1):89–95. https://doi.org/10.1007/s11240-019-01605-7

    CAS  Article  Google Scholar 

  15. 15.

    El-Beltagi HS, Ahmed OK, El-Desouky W (2011) Effect of low doses γ-irradiation on oxidative stress and secondary metabolites production of rosemary (Rosmarinus officinalis L.) callus culture. Radiat Phys Chem 80(9):968–976. https://doi.org/10.1016/j.radphyschem.2011.05.002

    CAS  Article  Google Scholar 

  16. 16.

    Pérez-Mendoza MB, Llorens-Escobar L, Vamegas-Espinoza PE et al (2019) Chemical characterization of leaves and calli extracts of Rosmarinus officinalis by UHPLC-MS. Electrophoresis 41:1776–1783. https://doi.org/10.1002/elps.201900152

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Hui-hui G, Jian-Fei W, Cui-Xia C et al (2018) Identification and characterization of cell cultures with various embryogenic/regenerative potential in cotton based on morphological, cytochemical, and cytogenetical assessment. J Integr Agric 17:60345–60353. https://doi.org/10.1016/S2095-3119(17)61876-8

  18. 18.

    Trejo-Tapia G, Balcazar-Aguilar JB, Martínez-Bonfil B, Salcedo-Morales G, Jaramillo-Flores M, Arenas-Ocampo ML, Jiménez-Aparicio A (2008) Effect of screening and subculture on the production of betaxanthins in Beta vulgaris L. var. “dark Detroit” callus culture. Innov Food Sci Emerg Technol 9(1):32–36. https://doi.org/10.1016/j.ifset.2007.04.009

    CAS  Article  Google Scholar 

  19. 19.

    Menke F, Scheres B (2009) Plant asymmetric cell division, vive la différence! Cell 137:1189–1192. https://doi.org/10.1016/j.cell.2009.06.007

  20. 20.

    Boudiar T, Lozano-Sánchez J, Harfi B, del Mar Contreras M, Segura-Carretero A (2019) Phytochemical characterization of bioactive compounds composition of Rosmarinus eriocalyx by RP–HPLC–ESI–QTOF–MS. Nat Prod Res 33:2208–2214. https://doi.org/10.1080/14786419.2018.1495635

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Mena P, Cirlini M, Tassotti M, Herrlinger K, Dall’Asta C, del Rio D (2016) Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules 21:1–15. https://doi.org/10.3390/molecules21111576

    CAS  Article  Google Scholar 

  22. 22.

    Papageorgiou V, Gardeli C, Mallouchos A, Papaioannou M, Komaitis M (2008) Variation of the chemical profile and antioxidant behavior of Rosmarinus officinalis L. and Salvia fruticosa miller grown in Greece. J Agric Food Chem 56(16):7254–7264. https://doi.org/10.1021/jf800802t

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Borrás-Linares I, Pérez-Sánchez A, Lozano-Sánchez J, Barrajón-Catalán E, Arráez-Román D, Cifuentes A, Micol V, Carretero AS (2015) A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells. Food Chem Toxicol 80:215–222. https://doi.org/10.1016/j.fct.2015.03.013

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Liu X, Du J, Ou Y et al (2013) Degradation pathway of carnosic acid in methanol solution through isolation and structural identification of its degradation products. Eur Food Res Technol 237:617–626. https://doi.org/10.1007/s00217-013-2035-5

    CAS  Article  Google Scholar 

  25. 25.

    Elbanna K, Assiri AMA, Tadros M, Khider M, Assaeedi A, Mohdaly AAA, Ramadan MF (2018) Rosemary (Rosmarinus officinalis) oil: composition and functionality of the cold-pressed extract. J Food Meas Charact 12(3):1601–1609. https://doi.org/10.1007/s11694-018-9775-7

    Article  Google Scholar 

  26. 26.

    Munné-Bosch S, Alegre L (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210:925–931. https://doi.org/10.1007/s004250050699

    Article  PubMed  Google Scholar 

  27. 27.

    Yesil-Celiktas O, Sevimli C, Bedir E, Vardar-Sukan F (2010) Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum Nutr 65(2):158–163. https://doi.org/10.1007/s11130-010-0166-4

  28. 28.

    Cömert Ö, Ay M, Aydoğan TS et al (2016) Antiproliferative activity of Humulus lupulus extracts on human hepatoma (Hep3B), colon (HT-29) cancer cells and proteases, tyrosinase, β- lactamase enzyme inhibition studies. J Enzyme Inhib Med Chem 31(1):90–98. https://doi.org/10.3109/14756366.2015.1004060

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Araceli Urquiza-López acknowledges a study grant from CONACYT and mobility grant to CIAL Madrid. This work was supported by Instituto Politécnico Nacional, México (IPN/SIP 20200706) and Ministerio de Ciencia, Innovación y Universidades, Spain (Project AGL2017-89417-R).

Funding

This work was supported by Instituto Politécnico Nacional, México (IPN/SIP 20200706) and Ministerio de Ciencia, Innovación y Universidades, Spain (Project AGL2017–89417-R).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Alejandro Cifuentes or Alma Angélica Del Villar-Martínez.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 30 kb)

ESM 2

(PPTX 95 kb)

ESM 3

(PPTX 75 kb)

ESM 4

(PPTM 37 kb)

ESM 5

(PPTX 39 kb)

ESM 6

(PPTX 52 kb)

ESM 7

(PPTX 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urquiza-López, A., Álvarez-Rivera, G., Ballesteros-Vivas, D. et al. Metabolite Profiling of Rosemary Cell Lines with Antiproliferative Potential against Human HT-29 Colon Cancer Cells. Plant Foods Hum Nutr 76, 319–325 (2021). https://doi.org/10.1007/s11130-021-00892-w

Download citation

Keywords

  • Rosmarinus officinalis
  • Plant cell lines
  • Anti-proliferative activity
  • HPLC-QTOF-MS
  • GC-QTOF-MS
  • HT-29 cell lines