Skip to main content
Log in

Physical Characterization of Maize Grits Expanded Snacks and Changes in the Carotenoid Profile

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The objective of this work was to evaluate the effects of feed moisture (13–17%, wb) and barrel temperature (120–160 °C) on physicochemical properties, and changes in the carotenoid profile of maize grits extruded snacks. The extrudates were obtained in a single-screw extruder, according to a 32 factorial design with two replicates. The linear coefficients of feed moisture and barrel temperature mainly affected the physicochemical properties. On the other hand, the interaction coefficient β112 dominated the change in total carotenoids, lutein, zeaxanthin, and β-carotene. The quadratic coefficients were also important for changes in total color (regarding feed moisture), and for β-cryptoxanthin, specific mechanical energy, and volumetric expansion index (regarding barrel temperature). β-cryptoxanthin and β-carotene increased, whereas lutein and zeaxanthin decreased. The mathematical models developed from responses revealed two feasible operating regions under the domain explored. For a satisfactory process, from a technological and nutritional point of view, it is suggested to extrude at the operating conditions ranging between 13.2–13.7% feed moisture and 120–132 °C barrel temperature. Under these conditions, the specific mechanical energy input required was 410–450 kJ/kg, and extrudates with a volumetric expansion index greater than 12, a crispness work less than 0.4 N.mm, and with moderate increments in the levels of β-carotene and β-cryptoxanthin were produced. The use of richer cultivars in carotenoids could contribute to the production of healthier snacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BT :

Barrel temperature

β CA :

β-carotene

β CR :

β-cryptoxanthin

db :

Dry basis

W c :

Crispness work

FM :

Feed moisture

LUT :

Lutein

SME :

Specific mechanical energy

TCA :

Total carotenoids content

ΔE :

Total color change

VEI :

Volumetric expansion index

wb :

Wet basis

ZEA :

Zeaxanthin

References

  1. Acosta-Estrada BA, Gutiérrez-Uribe JA, Serna-Saldivar SO (2019) Minor constituents and phytochemicals of the kernel. In: Serna-Saldivar SO (ed) Corn chemistry and technology, 3rd edn. AACC International Press, Oxford, pp 369–403

    Google Scholar 

  2. Borsarelli CD, Mercadante AZ (2009) Thermal and photochemical degradation of carotenoids. In: Landrum JT (ed) Carotenoids physical, chemical, and biological functions and properties, pp 229–253

  3. Moros EE, Darnoko D, Cheryan M, Perkins EG, Jerrell J (2002) Analysis of xanthophylls in corn by HPLC. J Agric Food Chem 50(21):5787–5790. https://doi.org/10.1021/jf020109l

    Article  CAS  PubMed  Google Scholar 

  4. Cueto M, Farroni A, Schoenlechner R, Schleining G, Buera P (2017) Carotenoid and color changes in traditionally flaked and extruded products. Food Chem 229:640–645. https://doi.org/10.1016/j.foodchem.2017.02.138

    Article  CAS  PubMed  Google Scholar 

  5. Gujral HS, Singh N, Singh B (2001) Extrusion behaviour of grits from flint and sweet corn. Food Chem 74(3):303–308. https://doi.org/10.1016/S0308-8146(01)00156-X

    Article  CAS  Google Scholar 

  6. Godavarti S, Karwe MV (1997) Determination of specific mechanical energy distribution on a twin-screw extruder. J Agric Eng Res 67(4):277–287. https://doi.org/10.1006/jaer.1997.0172

    Article  Google Scholar 

  7. Brent JJL, Mulvaney SJ, Cohen C, Bartsch JA (1997) Thermomechanical glass transition of extruded cereal melts. J Cereal Sci 26(3):301–312. https://doi.org/10.1006/jcrs.1997.0140

    Article  CAS  Google Scholar 

  8. Bamidele OP, Emmambux MN (2020) Encapsulation of bioactive compounds by “extrusion” technologies: a review. Crit Rev Food Sci Nutr:1–19. https://doi.org/10.1080/10408398.2020.1793724

  9. Ortiz-Cruz RA, Ramírez-Wong B, Ledesma-Osuna AI, Torres-Chávez PI, Sánchez-Machado DI, Montaño-Leyva B, López-Cervantes J, Gutiérrez-Dorado R (2020) Effect of extrusion processing conditions on the phenolic compound content and antioxidant capacity of sorghum (Sorghum bicolor (L.) Moench) bran. Plant Foods Hum Nutr 75(2):252–257. https://doi.org/10.1007/s11130-020-00810-6

    Article  CAS  PubMed  Google Scholar 

  10. Marty C, Berset C (1990) Factors affecting the thermal degradation of all-trans-beta-carotene. J Agric Food Chem 38(4):1063–1067. https://doi.org/10.1021/jf00094a033

    Article  CAS  Google Scholar 

  11. Ilo S, Berghofer E (1999) Kinetics of colour changes during extrusion cooking of maize grits. J Food Eng 39(1):73–80. https://doi.org/10.1016/S0260-8774(98)00148-4

    Article  Google Scholar 

  12. Kaisangsri N, Kowalski RJ, Wijesekara I, Kerdchoechuen O, Laohakunjit N, Ganjyal GM (2016) Carrot pomace enhances the expansion and nutritional quality of corn starch extrudates. LWT-Food Sci Technol 68:391–399. https://doi.org/10.1016/j.lwt.2015.12.016

  13. Ortak M, Caltinoglu C, Sensoy I, Karakaya S, Mert B (2017) Changes in functional properties and in vitro bioaccessibilities of β-carotene and lutein after extrusion processing. J Food Sci Technol 54(11):3543–3551. https://doi.org/10.1007/s13197-017-2812-4

  14. Ortiz D, Ponrajan A, Bonnet JP, Rocheford T, Ferruzzi MG (2018) Carotenoid stability during dry milling, storage, and extrusion processing of biofortified maize genotypes. J Agric Food Chem 66(18):4683–4691. https://doi.org/10.1021/acs.jafc.7b05706

    Article  CAS  PubMed  Google Scholar 

  15. Rosales A, Agama-Acevedo E, Arturo Bello-Pérez L, Gutiérrez-Dorado R, Palacios-Rojas N (2016) Effect of traditional and extrusion nixtamalization on carotenoid retention in tortillas made from provitamin a biofortified maize (Zea mays L.). J Agric Food Chem 64(44):8289–8295. https://doi.org/10.1021/acs.jafc.6b02951

    Article  CAS  PubMed  Google Scholar 

  16. Chinnaswamy R, Hanna MA (1988) Optimum extrusion-cooking conditions for maximum expansion of corn starch. J Food Sci 53(3):834–836. https://doi.org/10.1111/j.1365-2621.1988.tb08965.x

    Article  Google Scholar 

  17. Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23(2):85–112. https://doi.org/10.1016/S0141-8130(98)00040-3

    Article  PubMed  Google Scholar 

  18. Robutti J, Borrás F, González R, Torres R, De Greef D (2002) Endosperm properties and extrusion cooking behavior of maize cultivars. LWT-Food Sci Technol 35(8):663–669. https://doi.org/10.1006/fstl.2002.0926

  19. Cheng H, Hansen JH (2016) Extrudate expansion model in a twin-screw extrusion cooking process considering melt rheological property. Food Bioprocess Technol 9(4):604–611. https://doi.org/10.1007/s11947-015-1655-0

    Article  CAS  Google Scholar 

  20. Arêas JAG, Rocha-Olivieri CM, Marques MR (2016) Extrusion cooking: chemical and nutritional changes. In: Caballero B, Finglas PM, Toldrá F (eds) Encyclopedia of food and health, vol 2. Academic, Oxford, pp 569–575

    Chapter  Google Scholar 

  21. Lazou A, Krokida M (2011) Thermal characterisation of corn–lentil extruded snacks. Food Chem 127(4):1625–1633. https://doi.org/10.1016/j.foodchem.2011.02.029

    Article  CAS  Google Scholar 

  22. Alvarez-Martinez L, Kondury KP, Harper JM (1988) A general model for expansion of extruded products. J Food Sci 53(2):609–615. https://doi.org/10.1111/j.1365-2621.1988.tb07768.x

    Article  Google Scholar 

  23. Thymi S, Krokida MK, Pappa A, Maroulis ZB (2005) Structural properties of extruded corn starch. J Food Eng 68(4):519–526. https://doi.org/10.1016/j.jfoodeng.2004.07.002

    Article  Google Scholar 

  24. Cortés RNF, Guzmán IV, Martínez-Bustos F (2014) Effects of some extrusion variables on physicochemical characteristics of extruded corn starch-passion fruit pulp (Passiflora edulis) snacks. Plant Foods Hum Nutr 69(4):365–371. https://doi.org/10.1007/s11130-014-0443-8

    Article  CAS  PubMed  Google Scholar 

  25. Valenzuela-Lagarda JL, García-Armenta E, Pacheco-Aguilar R, Gutiérrez-Dorado R, Mazorra-Manzano MÁ, Lugo-Sánchez ME, Muy-Rangel MD (2018) Relationships between morphometrical properties and the texture of an extrusion-expanded snack made from squid mantle (Dosidicus gigas). J Texture Stud 49(5):476–484. https://doi.org/10.1111/jtxs.12321

    Article  PubMed  Google Scholar 

  26. Pardhi SD, Singh B, Nayik GA, Dar BN (2019) Evaluation of functional properties of extruded snacks developed from brown rice grits by using response surface methodology. J Saudi Soc Agric Sci 18(1):7–16. https://doi.org/10.1016/j.jssas.2016.11.006

    Article  Google Scholar 

  27. Ding Q-B, Ainsworth P, Tucker G, Marson H (2005) The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. J Food Eng 66(3):283–289. https://doi.org/10.1016/j.jfoodeng.2004.03.019

    Article  Google Scholar 

  28. Kaur G, Rehal J, Singh A, Singh B, Kaur A (2014) Optimization of extrusion parameters for development of ready-to-eat breakfast cereal using RSM. Asian J Dairy  Food Res 33(2):77–86. https://doi.org/10.5958/0976-0563.2014.00580.6

  29. Mendoza-Díaz S, Ortiz-Valerio MC, Castaño-Tostado E, Figueroa-Cárdenas JD, Reynoso-Camacho R, Ramos-Gómez M, Campos-Vega R, Loarca-Piña G (2012) Antioxidant capacity and antimutagenic activity of anthocyanin and carotenoid extracts from nixtamalized pigmented creole maize races (Zea mays L.). Plant Foods Hum Nutr 67(4):442–449. https://doi.org/10.1007/s11130-012-0326-9

    Article  CAS  PubMed  Google Scholar 

  30. Abdel-Aal E-SM, Young JC, Akhtar H, Rabalski I (2010) Stability of lutein in wholegrain bakery products naturally high in lutein or fortified with free lutein. J Agric Food Chem 58(18):10109–10117. https://doi.org/10.1021/jf102400t

    Article  CAS  Google Scholar 

  31. Ying D, Cheng LJ, Chibracq G, Sanguansri L, Oiseth SK, Augustin MA (2015) The format of β-carotene delivery affects its stability during extrusion. LWT-Food Sci Technol 60(1):1–7. https://doi.org/10.1016/j.lwt.2014.09.034

  32. Abdel-Aal E-SM, Akhtar H, Zaheer K, Ali R (2013) Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 5(4):1169–1185. https://doi.org/10.3390/nu5041169

    Article  CAS  PubMed Central  Google Scholar 

  33. Batterman-Azcona SJ, Lawton JW, Hamaker BR (1999) Effect of specific mechanical energy on protein bodies and α-zeins in corn flour extrudates. Cereal Chem 76(2):316–320. https://doi.org/10.1094/cchem.1999.76.2.316

Download references

Acknowledgments

The authors thank to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Concelho Nacional de Desenvolvimento Científico e Tecnológico), and FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro) for their generous support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhony Willian Vargas-Solórzano.

Ethics declarations

Conflict of Interest

The authors attest that there are no interests that competed with the objective, interpretation, and presentation of the results.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 352 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero Rodríguez, J.A., Ascheri, J.L.R., da Silva Lopes, A.J. et al. Physical Characterization of Maize Grits Expanded Snacks and Changes in the Carotenoid Profile. Plant Foods Hum Nutr 76, 68–75 (2021). https://doi.org/10.1007/s11130-020-00876-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-020-00876-2

Keywords

Navigation