Skip to main content

Comparative Analysis of the Major Metabolites of Ukrainian Saffron Samples by HPLC

Abstract

Crocus sativus L. is one of the most valuable crops, which stigmas are used as the food supplement and herbal medicine. In Ukraine, the cultivation of C. sativus began in 2015, and in this regard, it became possible to conduct a comparative content analysis of the major metabolites (crocin, picrocrocin, safranal) using the validated HPLC method in the stigmas from the different country regions. The grinding technique of Crocus stigmas in liquid nitrogen was used for the first time, which influenced an increase in the yield of trans-crocetin bis(β-D-gentiobiosyl) ester in 3.5 times compared with a normal grinding. Samples from the northeastern regions of cultivation such as Zaporizhia and Chernigiv had the higher amount of crocin (205 and 226 mg/g, respectively), while in the samples of the southwestern region the decrease of the amount of crocin was observed (180 mg/g and less), which was due to the climatic features of the country. These results can be utilized in the pharmaceutical and food industries for creating food additives for human nutrition.

Graphical Abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Shokrpour M (2019) Saffron (Crocus sativus L.) breeding: opportunities and challenges. In: Al-Khayri J, Jain S, Johnson D (eds) Advances in plant breeding strategies: industrial and food crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23265-8_17

    Chapter  Google Scholar 

  2. 2.

    Mykhailenko O, Kovalyov V, Goryacha O, Ivanauskas L, Georgiyants V (2019) Biologically active compounds and pharmacological activities of species of the genus Crocus: a review. Phytochem 162:56–89. https://doi.org/10.1016/j.phytochem.2019.02.004

    CAS  Article  Google Scholar 

  3. 3.

    Caballero-Ortega H, Pereda-Miranda R, Abdullaev FI (2007) HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem 100:1126–1131. https://doi.org/10.1016/j.foodchem.2005.11.020

    CAS  Article  Google Scholar 

  4. 4.

    Мykhailenko О, Desenko V, Ivanauskas L, Georgiyants V (2020) Standard operating procedure of Ukrainian saffron cultivation according with good agricultural and collection practices to assure quality and traceability. Ind Crop Prod 151:112376–112387. https://doi.org/10.1016/j.indcrop.2020.112376

    CAS  Article  Google Scholar 

  5. 5.

    Mykhailenko O, Gudžinskas Z, Kovalyov V, Desenko V, Ivanauskas L, Bezruk I, Georgiyants V (2020) Effect of ecological factors on the accumulation of phenolic compounds in Iris species from Latvia, Lithuania and Ukraine. Phytochem Anal 31:1–19. https://doi.org/10.1002/pca.2918

    CAS  Article  Google Scholar 

  6. 6.

    Román B, González-Verdejo C, Peña F, Nadal S, Gómez P (2012) Evaluation of different pulverisation methods for RNA extraction in squash fruit: lyophilisation, cryogenic mill and mortar grinding. Phytochem Anal 23:622–626. https://doi.org/10.1002/pca.2364

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L (2018) Carotenoid metabolism in plants: the role of plastids. Mol Plant 11:58–74. https://doi.org/10.1016/j.molp.2017.09.010

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

O.M., V.G.: Conceptualization; O.M., I.B.: Data curation, Writing - original draft; I.B., L.I.: Formal analysis; Methodology, Software, Validation; V.G.: Supervision, Writing - review & editing.

Corresponding author

Correspondence to Olha Mykhailenko.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 203 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mykhailenko, O., Bezruk, I., Ivanauskas, L. et al. Comparative Analysis of the Major Metabolites of Ukrainian Saffron Samples by HPLC. Plant Foods Hum Nutr 76, 394–396 (2021). https://doi.org/10.1007/s11130-020-00873-5

Download citation

Keywords

  • Saffron
  • Liquid nitrogen
  • Crocin, HPLC
  • Ukraine