Effect of Sprouting on Proteins and Starch in Quinoa (Chenopodium quinoa Willd.)


This study aims at understanding the relation among sprouting time (from 12 up to 72 h), changes in protein and starch components, and flour functionality in quinoa. Changes related to the activity of sprouting-related proteases were observed after 48 h of sprouting in all protein fractions. Progressive proteolysis resulted in relevant modification in the organization of quinoa storage proteins, with a concomitant increase in the availability of physiologically relevant metals such as copper and zinc. Changes in the protein profile upon sprouting resulted in improved foam stability, but in impaired foaming capacity. The increased levels of amylolytic enzymes upon sprouting also made starch less prompt to gelatinize upon heating. Consequently, starch re-association in a more ordered structure upon cooling was less effective, resulting in low setback viscosity. The nature and the intensity of these modifications suggest various possibilities as for using flour from sprouted quinoa as an ingredient in the formulation of baked products.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability



  1. 1.

    Bastidas EG, Roura R, Rizzolo DAD, Massanés T, Gomis R (2016) Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: an integrative review. J Nutr Food Sci 6:1–10. https://doi.org/10.4172/2155-9600.1000497

    CAS  Article  Google Scholar 

  2. 2.

    Friedman M (1996) Nutritional value of proteins from different food sources. A review J Agric Food Chem 44:6–29. https://doi.org/10.1021/jf9400167

    CAS  Article  Google Scholar 

  3. 3.

    Berti C, Ballabio C, Restani P, Porrini M, Bonomi F, Iametti S (2004) Immunochemical and molecular properties of proteins in Chenopodium quinoa. Cereal Chem 81:275–277. https://doi.org/10.1094/CCHEM.2004.81.2.275

    CAS  Article  Google Scholar 

  4. 4.

    Suárez-Estrella D, Torri L, Pagani MA, Marti A (2018) Quinoa bitterness: causes and solutions for improving product acceptability. J Sci Food Agric 98:4033–4041. https://doi.org/10.1002/jsfa.8980

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Gómez-Caravaca AM, Iafelice G, Verardo V, Marconi E, Caboni MF (2014) Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd). Food Chem 157:174–178. https://doi.org/10.1016/j.foodchem.2014.02.023

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Omary MB, Fong C, Rothschild J, Finney P (2012) Effects of germination on the nutritional profile of gluten-free cereals and pseudocereals: a review. Cereal Chem 89:1–14. https://doi.org/10.1094/CCHEM-01-11-0008

    CAS  Article  Google Scholar 

  7. 7.

    Elkhalifa AEO, Bernhardt R, Cardone G, Marti A, Iametti S, Marengo M (2017) Physicochemical properties of sorghum flour are selectively modified by combined germination-fermentation. J Food Sci Tech 54:3307–3313. https://doi.org/10.1007/s13197-017-2781-7

    CAS  Article  Google Scholar 

  8. 8.

    Marti A, Cardone G, Nicolodi A, Quaglia L, Pagani MA (2017) Sprouted wheat as an alternative to conventional flour improvers in bread-making. LWT-Food Sci Technol 80:230–236. https://doi.org/10.1016/j.lwt.2017.02.028

    CAS  Article  Google Scholar 

  9. 9.

    Cardone G, D'Incecco P, Pagani MA, Marti A (2020) Sprouting improves the bread-making performance of whole wheat flour (Triticum aestivum L.). J Sci Food Agric 100:2453–2459

    CAS  Article  Google Scholar 

  10. 10.

    Marengo M, Carpen A, Bonomi F, Casiraghi MC, Meroni E, Quaglia L, Iametti S, Pagani MA, Marti A (2017) Macromolecular and micronutrient profiles of sprouted chickpeas to be used for integrating cereal-based food. Cereal Chem 94:82–88. https://doi.org/10.1094/CCHEM-04-16-0108-FI

    CAS  Article  Google Scholar 

  11. 11.

    Mäkinen OE, Zannini E, Arendt EK (2013) Germination of oat and quinoa and evaluation of the malts as gluten free baking ingredients. Plant Foods Hum Nutr 68:90–95. https://doi.org/10.1007/s11130-013-0335-3

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Hager AS, Mäkinen OE, Arendt EK (2014) Amylolytic activities and starch reserve mobilization during the germination of quinoa. Eur Food Res Technol 239:621–627. https://doi.org/10.1007/s00217-014-2258-0

    CAS  Article  Google Scholar 

  13. 13.

    Mäkinen OE, Hager AS, Arendt EK (2014) Localisation and development of proteolytic activities in quinoa (Chenopodium quinoa) seeds during germination and early seedling growth. J Cereal Sci 60:484–489. https://doi.org/10.1016/j.jcs.2014.08.009

    CAS  Article  Google Scholar 

  14. 14.

    AACC Approved Methods of Analysis (2001) Cereals & Grains Association. St. Paul, MN, USA

  15. 15.

    INEN (1988) Quinua. Determinación del contenido de saponinas por medio del método espumoso (método de rutina) (NTE INEN 1672). In: Registro Oficial del Ecuador N° 978, 1988

  16. 16.

    Koziol MJ (1991) Afrosimetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa Willd). J Sci Food Agric 54:211–219. https://doi.org/10.1002/jsfa.2740540206

    CAS  Article  Google Scholar 

  17. 17.

    Marengo M, Bonomi F, Marti A, Pagani MA, Elkhalifa AEO, Iametti S (2015) Molecular features of fermented and sprouted sorghum flours relate to their suitability as components of enriched gluten-free pasta. LWT-Food Sci Technol 63:511–518. https://doi.org/10.1016/j.lwt.2015.03.070

    CAS  Article  Google Scholar 

  18. 18.

    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    CAS  Article  Google Scholar 

  19. 19.

    Coffmann CW, Garciaj VV (1977) Functional properties and amino acid content of a protein isolate from mung bean flour. Int J Food Sci 12:473–484. https://doi.org/10.1111/j.1365-2621.1977.tb00132.x

    CAS  Article  Google Scholar 

  20. 20.

    Rosa M, Hilal M, González JA, Prado FE (2004) Changes in soluble carbohydrates and related enzymes induced by low temperature during early developmental stages of quinoa (Chenopodium quinoa) seedlings. J Plant Physiol 161:683–689. https://doi.org/10.1078/0176-1617-01257

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Moreno C, Seal CE, Papenbrock J (2018) Seed priming improves germination in saline conditions for Chenopodium quinoa and Amaranthus caudatus. J Agron Crop Sci 204:40–48. https://doi.org/10.1111/jac.12242

    CAS  Article  Google Scholar 

  22. 22.

    Grassi S, Cardone G, Bigagnoli D, Marti A (2018) Monitoring the sprouting process of wheat by non-conventional approaches. J Cereal Sci 83:180–187. https://doi.org/10.1016/j.jcs.2018.08.007

    Article  Google Scholar 

  23. 23.

    Ziegler P (1995) Carbohydrate degradation during seed development. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker Inc, New York, pp 447–474

  24. 24.

    Iametti S, Bonomi F, Pagani MA, Zardi M, Cecchini C, D'Egidio MG (2006) Properties of the protein and carbohydrate fractions in immature wheat kernels. J Agric Food Chem 54:10239–10244. https://doi.org/10.1021/jf062269t

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Uluko H, Liu L, Lv JP, Zhang SW (2016) Functional characteristics of milk protein concentrates and their modification. Crit Rev Food Sci Nutr 56:1193–1208. https://doi.org/10.1080/10408398.2012.758625

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Amagliani L, Scmitt C (2017) Globular plant protein aggregates for stabilization of food foams and emulsions. Trends Food Sci Technol 67:248–259. https://doi.org/10.1016/j.tifs.2017.07.013

    CAS  Article  Google Scholar 

  27. 27.

    Guo F, Xiong YL, Qin F, Jian H, Huang X, Chen J (2015) Surface properties of heat-induced soluble soy protein aggregates of different molecular masses. J Food Sci 80:C279–C287. https://doi.org/10.1111/1750-3841.12761

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Mostafa MM, Rahma EH, Rady AH (1987) Chemical and nutritional changes in soybean during germination. Food Chem 23:257–275. https://doi.org/10.1016/0308-8146(87)90113-0

    CAS  Article  Google Scholar 

  29. 29.

    Jimenez D, Miraballes M, Gambaro A, Lobo M, Samman N (2020) Baby purees elaborated with Andean crops. Influence of germination and oils in physico-chemical and sensory characteristics. LWT-Food Sci Technol 124:108901. https://doi.org/10.1016/j.lwt.2019.108901

Download references


Diego Suárez-Estrella has been the grateful recipient of a PhD fellowship from Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT), Ecuador. The authors thank professor Francesco Bonomi for fruitful discussion and for constructive criticism.

Author information



Corresponding authors

Correspondence to Stefania Iametti or Alessandra Marti.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethics Approval


Consent to Participate


Consent for Publication


Code Availability


Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suárez-Estrella, D., Bresciani, A., Iametti, S. et al. Effect of Sprouting on Proteins and Starch in Quinoa (Chenopodium quinoa Willd.). Plant Foods Hum Nutr 75, 635–641 (2020). https://doi.org/10.1007/s11130-020-00864-6

Download citation


  • Quinoa
  • Sprouting
  • Protein features
  • Functional properties
  • Pasting properties