Skip to main content
Log in

Determination of Phenolic Compounds in Three Edible Ripening Stages of Yellow Guava (Psidium cattleianum Sabine) after Acidic Hydrolysis by LC-MS/MS

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Yellow guava (Psidium cattleianum Sabine) has received considerable attention in the last years because of their high content in bioactive compounds with potential application in food and pharmaceutical industries. In this regard, this study aimed to investigate the phenolic compounds of three edible ripening stages of yellow guava fruits after acidic hydrolysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and their antioxidant capacity. Among the 23 phenolics quantified, catechin, isoquercitrin, quercetin, gallic acid, and syringic acid showed significant concentrations in all the evaluated stages, with values ranging from 479.59 ± 12.52 to 12,795.50 ± 320.95 μg 100 g−1 of dry matter. In general, higher concentrations of phenolic acids were found in the latter ripening stages, while flavonoids were in the earlier ripening stages. These findings suggest that the ripening process promotes changes in the phenolic composition of yellow guava. However, considering the sum of phenolic compounds and the antioxidant capacity, all ripening stages investigated can be suggested as a supply of bioactive compounds for consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pereira MC, Steffens RS, Jablonski A et al (2012) Characterization and antioxidant potential of Brazilian fruits from the Myrtaceae family. J Agric Food Chem 60:3061–3067. https://doi.org/10.1021/jf205263f

    Article  CAS  PubMed  Google Scholar 

  2. Da Silva NA, Rodrigues E, Mercadante AZ, De Rosso VV (2014) Phenolic compounds and carotenoids from four fruits native from the Brazilian Atlantic forest. J Agric Food Chem 62:5072–5084. https://doi.org/10.1021/jf501211p

    Article  CAS  PubMed  Google Scholar 

  3. Pereira E dos S, Vinholes J, Franzon RC, et al (2018) Psidium cattleianum fruits: a review on its composition and bioactivity. Food Chem 258:95–103. https://doi.org/10.1016/j.foodchem.2018.03.024

    Article  CAS  PubMed  Google Scholar 

  4. Medina AL, Haas LIR, Chaves FC et al (2011) Araçá (Psidium cattleianum Sabine) fruit extracts with antioxidant and antimicrobial activities and antiproliferative effect on human cancer cells. Food Chem 128:916–922. https://doi.org/10.1016/j.foodchem.2011.03.119

    Article  CAS  Google Scholar 

  5. Betta FD, Nehring P, Seraglio SKT, Schulz M, Valese AC, Daguer H, Gonzaga LV, Fett R, Costa ACO (2018) Phenolic compounds determined by LC-MS/MS and in vitro antioxidant capacity of brazilian fruits in two edible ripening stages. Plant Foods Hum Nutr 73:302–307. https://doi.org/10.1007/s11130-018-0690-1

    Article  PubMed  Google Scholar 

  6. Ribeiro AB, Chisté RC, Freitas M et al (2014) Psidium cattleianum fruit extracts are efficient in vitro scavengers of physiologically relevant reactive oxygen and nitrogen species. Food Chem 165:140–148. https://doi.org/10.1016/j.foodchem.2014.05.079

    Article  CAS  PubMed  Google Scholar 

  7. Ignat I, Volf I, Popa VI (2011) A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem 126:1821–1835. https://doi.org/10.1016/J.FOODCHEM.2010.12.026

    Article  CAS  PubMed  Google Scholar 

  8. Kim K-H, Tsao R, Yang R, Cui SW (2006) Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem 95:466–473. https://doi.org/10.1016/J.FOODCHEM.2005.01.032

    Article  CAS  Google Scholar 

  9. Taiz L, Zeiger E (2009) Fisiologia vegetal, 4th edn. Artmed, Porto Alegre

    Google Scholar 

  10. Prasanna V, Prabha TN, Tharanathan RN (2007) Fruit ripening phenomena – an overview. Crit Rev Food Sci Nutr 47:1–19. https://doi.org/10.1080/10408390600976841

    Article  CAS  PubMed  Google Scholar 

  11. Seraglio SKT, Schulz M, Nehring P et al (2018) Nutritional and bioactive potential of Myrtaceae fruits during ripening. Food Chem 239:649–656. https://doi.org/10.1016/j.foodchem.2017.06.118

    Article  CAS  PubMed  Google Scholar 

  12. Kim D-O, Lee KW, Lee HJ, Lee CY (2002) Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem 50:3713–3717. https://doi.org/10.1021/jf020071c

    Article  CAS  PubMed  Google Scholar 

  13. Arnous A, Makris DP, Kefalas P (2002) Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. J Food Compos Anal 15:655–665. https://doi.org/10.1006/jfca.2002.1070

    Article  CAS  Google Scholar 

  14. Colak N, Torun H, Gruz J, Strnad M, Hermosín-Gutiérrez I, Hayirlioglu-Ayaz S, Ayaz FA (2016) Bog bilberry phenolics, antioxidant capacity and nutrient profile. Food Chem 201:339–349. https://doi.org/10.1016/j.foodchem.2016.01.062

    Article  CAS  PubMed  Google Scholar 

  15. Ahmad N, Zuo Y, Lu X, Anwar F, Hameed S (2016) Characterization of free and conjugated phenolic compounds in fruits of selected wild plants. Food Chem 190:80–89. https://doi.org/10.1016/j.foodchem.2015.05.077

    Article  CAS  PubMed  Google Scholar 

  16. Gohlke A, Ingelmann CJ, Nürnberg G, Starke A, Wolffram S, Metges CC (2013) Bioavailability of quercetin from its aglycone and its glucorhamnoside rutin in lactating dairy cows after intraduodenal administration. J Dairy Sci 96:2303–2313. https://doi.org/10.3168/jds.2012-6234

    Article  CAS  PubMed  Google Scholar 

  17. Teixeira AM, Chaves FC, Franzon RC, Rombaldi CV (2016) Influence of genotype and harvest season on the phytochemical composition of araçá (Psidium cattleianum Sabine). Fruit 3:1–7. https://doi.org/10.15436/2377-0619.16.861

    Article  Google Scholar 

  18. Biegelmeyer R, Andrade JMM, Aboy AL, Apel MA, Dresch RR, Marin R, Raseira Mdo C, Henriques AT (2011) Comparative analysis of the chemical composition and antioxidant activity of red (Psidium cattleianum) and yellow (Psidium cattleianum var. lucidum) strawberry guava fruit. J Food Sci 76:C991–C996. https://doi.org/10.1111/j.1750-3841.2011.02319.x

    Article  CAS  PubMed  Google Scholar 

  19. Bataglion GA, Da Silva FMA, Eberlin MN, Koolen HHF (2015) Determination of the phenolic composition from Brazilian tropical fruits by UHPLC-MS/MS. Food Chem 180:280–287. https://doi.org/10.1016/j.foodchem.2015.02.059

    Article  CAS  PubMed  Google Scholar 

  20. Freitas J, Vendramini P, Melo J et al (2019) Assessing the spatial distribution of key flavonoids in mentha × piperita leaves: an application of desorption electrospray ionization mass spectrometry imaging (DESI-MSI). J Braz Chem Soc 30(7):1437–1446. https://doi.org/10.21577/0103-5053.20190039

  21. Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143. https://doi.org/10.1080/10408690390826464

    Article  CAS  PubMed  Google Scholar 

  22. Vinholes J, Reis SF, Lemos G et al (2018) Effect of in vitro digestion on the functional properties of Psidium cattleianum Sabine (araçá), Butia odorata (Barb. Rodr.) Noblick (butiá) and Eugenia uniflora L. (pitanga) fruit extracts. Food Funct 9:6380–6390. https://doi.org/10.1039/C8FO01329B

    Article  CAS  PubMed  Google Scholar 

  23. Karaaslan M, Mehmet F, Asliye Y, Hasan K (2015) Synthesis and accumulation of anthocyanins in sour cherries during ripening in accordance with antioxidant capacity development and chalcone synthase expression. Eur Food Res Technol 242:189–198. https://doi.org/10.1007/s00217-015-2530-y

    Article  CAS  Google Scholar 

  24. Mingshu L, Kai Y, Qiang H, Dongying J (2006) Biodegradation of gallotannins and ellagitannins. J Basic Microbiol 46:68–84. https://doi.org/10.1002/jobm.200510600

    Article  CAS  Google Scholar 

  25. Schulz M, Seraglio SKT, Della Betta F, Nehring P, Valese AC, Daguer H, Gonzaga LV, Costa ACO, Fett R (2019) Blackberry (Rubus ulmifolius Schott): chemical composition, phenolic compounds and antioxidant capacity in two edible stages. Food Res Int 122:627–634. https://doi.org/10.1016/j.foodres.2019.01.034

    Article  CAS  PubMed  Google Scholar 

  26. Seraglio SKT, Schulz M, Nehring P et al (2019) Determinação de compostos fenólicos por LC-MS/MS e capacidade antioxidante de acerola em três estádios de maturação comestíveis. Rev do Congr Sul Bras Eng Aliment 4:96–110. https://doi.org/10.5965/24473650412018096

    Article  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. Authors also wish to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Cabanha Seraglio.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mayara Schulz or Roseane Fett.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulz, M., Seraglio, S.K.T., Della Betta, F. et al. Determination of Phenolic Compounds in Three Edible Ripening Stages of Yellow Guava (Psidium cattleianum Sabine) after Acidic Hydrolysis by LC-MS/MS. Plant Foods Hum Nutr 75, 110–115 (2020). https://doi.org/10.1007/s11130-019-00792-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-019-00792-0

Keywords

Navigation