Effects of Cocoa-Derived Polyphenols on Cognitive Function in Humans. Systematic Review and Analysis of Methodological Aspects


The effects of cocoa-derived polyphenols on cognitive functions have been analyzed through numerous studies using different interventions (doses, vehicles, time frame, cognition tests, and characteristics of participants) which may hamper the interpretation and comparison of findings across investigations. Thus, a systematic review was conducted to analyze the effects of cocoa-derived polyphenols intake on human cognition and discuss the methodological aspects that may contribute to the heterogeneity of findings. Randomized clinical trials evaluating the effect of cocoa polyphenols on cognitive function in healthy subjects were selected according to selection criteria. Twelve studies were selected. Quality was assessed according to the Cochrane risk for bias tool. The most common risk for bias was the lack of information about the sequence generation process. Effects on cognitive function were observed after consumption of 50 mg/day of (−)-epicatechin and in studies using a component-matched placebo and cocoa as the polyphenol vehicle given to healthy adults (18–50 years). Memory (n = 5) and executive function (n = 4) showed the most significant effects with medium and large effect sizes after intake of intermediate doses of cocoa flavanols (500–750 mg/day). Overall, this set of studies suggest a positive effect of cocoa polyphenols on memory and executive function. However, the available evidence is very diverse and future studies may address the identified sources of variation to strengthen current evidence on this promising field.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(8S Suppl):2073S–2085S. https://doi.org/10.1093/jn/130.8.2073S

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2(12):1231-1246. https://doi.org/10.3390/nu2121231

    CAS  Article  Google Scholar 

  3. 3.

    Abbas M, Saeed F, Anjum FM, Afzaal M, Tufail T, Bashir MS, Ishtiaq A, Hussain S, Suleria HAR (2017) Natural polyphenols: an overview. Int J Food Prop 20(8):1689–1699. https://doi.org/10.1080/10942912.2016.1220393

    CAS  Article  Google Scholar 

  4. 4.

    Vogiatzoglou A, Mulligan AA, Luben RN, Lentjes MAH, Heiss C, Kelm M, Merx MW, Spencer JPE, Schroeter H, Kuhnle GGC (2014) Assessment of the dietary intake of total flavan-3-ols, monomeric flavan-3-ols, proanthocyanidins and theaflavins in the European Union. Br J Nutr 111(8):1463–1473. https://doi.org/10.1017/S0007114513003930

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Vogiatzoglou A, Mulligan AA, Bhaniani A, Lentjes MAH, McTaggart A, Luben RN, Heiss C, Kelm M, Merx MW, Spencer JR, Schroeter H, Khaw KT, Kuhnle GGC (2015) Associations between flavan-3-ol intake and CVD risk in the Norfolk cohort of the European prospective investigation into cancer (EPIC-Norfolk). Free Radic Biol Med 84:1–10. https://doi.org/10.1016/j.freeradbiomed.2015.03.005

    CAS  Article  Google Scholar 

  6. 6.

    Gu L, House SE, Wu X, Ou B, Prior RL (2006) Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J Agric Food Chem 54(11):4057–4061. https://doi.org/10.1021/jf060360r

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Andujar I, Recio MC, Giner RM, Rios JL (2012) Cocoa polyphenols and their potential benefits for human health. Oxid Med Cell Long 906252. https://doi.org/10.1155/2012/906252

    Article  Google Scholar 

  8. 8.

    Adamson GE, Lazarus SA, Mitchell AE, Prior RL, Cao G, Jacobs PH, Kremers BG, Hammerstone JF, Rucker RB, Ritter KA, Schmitz HH (1999) HPLC method for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. J Agric Food Chem 47(10):4184–4188

    CAS  Article  Google Scholar 

  9. 9.

    Katz DL, Doughty K, Ali A (2011) Cocoa and chocolate in human health and disease. Antioxid Redox Signal 15(10):2779–2811. https://doi.org/10.1089/ars.2010.3697

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Tomas-Barberan FA, Cienfuegos-Jovellanos E, Marin A, Muguerza B, Gil-Izquierdo A, Cerda B, Zafrilla P, Morillas J, Mulero J, Ibarra A, Pasamar MA, Ramon D, Espin JC (2007) A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem 55(10):3926–3935. https://doi.org/10.1021/jf070121j

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A (2003) Plasma antioxidants from chocolate. Nature 424(6952):1013. https://doi.org/10.1038/4241013a

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Actis-Goretta L, Leveques A, Giuffrida F, Romanov-Michailidis F, Viton F, Barron D, Duenas-Paton M, Gonzalez-Manzano S, Santos-Buelga C, Williamson G, Dionisi F (2012) Elucidation of (−)-epicatechin metabolites after ingestion of chocolate by healthy humans. Free Radic Biol Med 53(4):787–795. https://doi.org/10.1016/j.freeradbiomed.2012.05.023

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Ottaviani JI, Borges G, Momma TY, Spencer JP, Keen CL, Crozier A, Schroeter H (2016) The metabolome of [2-(14)C](−)-epicatechin in humans: implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives. Sci Rep 6:29034. https://doi.org/10.1038/srep29034

  14. 14.

    Mena P, Bresciani L, Brindani N, Ludwig IA, Pereira-Caro G, Angelino D, Llorach R, Calani L, Brighenti F, Clifford MN, Gill CIR, Crozier A, Curti C, Del Rio D (2019) Phenyl-gamma-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Nat Prod Rep 36(5):714–752. https://doi.org/10.1039/c8np00062j

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Duenas M, Gonzalez-Manzano S, Gonzalez-Paramas A, Santos-Buelga C (2010) Antioxidant evaluation of o-methylated metabolites of catechin, epicatechin and quercetin. J Pharm Biomed Anal 51(2):443–449. https://doi.org/10.1016/j.jpba.2009.04.007

    Article  Google Scholar 

  16. 16.

    Ottaviani JI, Momma TY, Kuhnle GK, Keen CL, Schroeter H (2012) Structurally related (−)-epicatechin metabolites in humans: assessment using de novo chemically synthesized authentic standards. Free Radic Biol Med 52(8):1403–1412. https://doi.org/10.1016/j.freeradbiomed.2011.12.010

    CAS  Article  Google Scholar 

  17. 17.

    Figueira I, Garcia G, Pimpao RC, Terrasso AP, Costa I, Almeida AF, Tavares L, Pais TF, Pinto P, Ventura MR, Filipe A, McDougall GJ, Stewart D, Kim KS, Palmela I, Brites D, Brito MA, Brito C, Santos CN (2017) Polyphenols journey through blood-brain barrier towards neuronal protection. Sci Rep 7(1):11456. https://doi.org/10.1038/s41598-017-11512-6

  18. 18.

    Unno K, Pervin M, Nakagawa A, Iguchi K, Hara A, Takagaki A, Nanjo F, Minami A, Nakamura Y (2017) Blood-brain barrier permeability of green tea catechin metabolites and their neuritogenic activity in human Neuroblastoma SH-SY5Y cells. Mol Nutr Food Res 61(12). https://doi.org/10.1002/mnfr.201700294

    Article  Google Scholar 

  19. 19.

    Noe V, Penuelas S, Lamuela-Raventos RM, Permanyer J, Ciudad CJ, Izquierdo-Pulido M (2004) Epicatechin and a cocoa polyphenolic extract modulate gene expression in human Caco-2 cells. J Nutr 134(10):2509–2516

    CAS  Article  Google Scholar 

  20. 20.

    Sudano I, Flammer AJ, Roas S, Enseleit F, Ruschitzka F, Corti R, Noll G (2012) Cocoa, blood pressure, and vascular function. Curr Hypertens Rep 14(4):279–284. https://doi.org/10.1007/s11906-012-0281-8

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Sorond FA, Lipsitz LA, Hollenberg NK, Fisher ND (2008) Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans. Neuropsychiatr Dis Treat 4(2):433–440

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Corti R, Flammer AJ, Hollenberg NK, Luscher TF (2009) Cocoa and cardiovascular health. Circulation 119(10):1433–1441. https://doi.org/10.1161/CIRCULATIONAHA.108.827022

    Article  PubMed  Google Scholar 

  23. 23.

    Grassi D, Necozione S, Lippi C, Croce G, Valeri L, Pasqualetti P, Desideri G, Blumberg JB, Ferri C (2005) Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension 46(2):398–405. https://doi.org/10.1161/01.HYP.0000174990.46027.70

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Muniyappa R, Hall G, Kolodziej TL, Karne RJ, Crandon SK, Quon MJ (2008) Cocoa consumption for 2 wk enhances insulin-mediated vasodilatation without improving blood pressure or insulin resistance in essential hypertension. Am J Clin Nutr 88(6):1685–1696. https://doi.org/10.3945/ajcn.2008.26457

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Perez-Cano FJ, Massot-Cladera M, Franch A, Castellote C, Castell M (2013) The effects of cocoa on the immune system. Front Pharmacol 4:71. https://doi.org/10.3389/fphar.2013.00071

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Camps-Bossacoma M, Massot-Cladera M, Abril-Gil M, Franch A, Perez-Cano FJ, Castell M (2017) Cocoa diet and antibody immune response in preclinical studies. Front Nutr 4:28. https://doi.org/10.3389/fnut.2017.00028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Maskarinec G (2009) Cancer protective properties of cocoa: a review of the epidemiologic evidence. Nutr Cancer 61(5):573–579. https://doi.org/10.1080/01635580902825662

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Selmi C, Mao TK, Keen CL, Schmitz HH, Eric Gershwin M (2006) The anti-inflammatory properties of cocoa flavanols. J Cardiovasc Pharmacol 47(Suppl 2):S163–S171 discussion S172-166

    CAS  Article  Google Scholar 

  29. 29.

    Ellinger S, Stehle P (2016) Impact of cocoa consumption on inflammation processes- a critical review of randomized controlled trials. Nutrients 8(6):321. https://doi.org/10.3390/nu8060321

    Article  Google Scholar 

  30. 30.

    Hayek N (2013) Chocolate, gut microbiota, and human health. Front Pharmacol 4:11. https://doi.org/10.3389/fphar.2013.00011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Macready AL, Kennedy OB, Ellis JA, Williams CM, Spencer JP, Butler LT (2009) Flavonoids and cognitive function: a review of human randomized controlled trial studies and recommendations for future studies. Genes Nutr 4(4):227–242. https://doi.org/10.1007/s12263-009-0135-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Socci V, Tempesta D, Desideri G, De Gennaro L, Ferrara M (2017) Enhancing human cognition with cocoa flavonoids. Front Nutr 4:19. https://doi.org/10.3389/fnut.2017.00019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Muralidhara KG (2015) Bioactive nutraceuticals and dietary supplements in neurological and brain disease. Academic Press. https://doi.org/10.1016/C2012-0-06799-3

  34. 34.

    Heo HJ, Lee CY (2005) Epicatechin and catechin in cocoa inhibit amyloid beta protein induced apoptosis. J Agric Food Chem 53(5):1445–1448. https://doi.org/10.1021/jf048989m

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Schroeter H, Bahia P, Spencer JP, Sheppard O, Rattray M, Cadenas E, Rice-Evans C, Williams RJ (2007) (−)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. J Neurochem 101(6):1596–1606. https://doi.org/10.1111/j.1471-4159.2006.04434.x

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Abd El Mohsen MM, Kuhnle G, Rechner AR, Schroeter H, Rose S, Jenner P, Rice-Evans CA (2002) Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med 33(12):1693–1702

    CAS  Article  Google Scholar 

  37. 37.

    Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MB (2005) Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals 14(1–2):46–60. https://doi.org/10.1159/000085385

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Nehlig A (2013) The neuroprotective effects of cocoa flavanol and its influence on cognitive performance. Br J Clin Pharmacol 75(3):716–727. https://doi.org/10.1111/j.1365-2125.2012.04378.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    van Praag H, Lucero MJ, Yeo GW, Stecker K, Heivand N, Zhao C, Yip E, Afanador M, Schroeter H, Hammerstone J, Gage FH (2007) Plant-derived flavanol (−)epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci 27(22):5869–5878. https://doi.org/10.1523/JNEUROSCI.0914-07.2007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Scholey A, Owen L (2013) Effects of chocolate on cognitive function and mood: a systematic review. Nutr Rev 71(10):665–681. https://doi.org/10.1111/nure.12065

    Article  PubMed  Google Scholar 

  41. 41.

    Sokolov AN, Pavlova MA, Klosterhalfen S, Enck P (2013) Chocolate and the brain: neurobiological impact of cocoa flavanols on cognition and behavior. Neurosci Biobehav Rev 37(10 Pt 2):2445–2453. https://doi.org/10.1016/j.neubiorev.2013.06.013

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    RNaR K (2014) Improving cognitive function from children to old age: a systematic review of recent smart ageing intervention studies. Adv Neurosci 235479. https://doi.org/10.1155/2014/235479

    Article  Google Scholar 

  43. 43.

    Barnes JN (2015) Exercise, cognitive function, and aging. Adv Physiol Educ 39(2):55–62. https://doi.org/10.1152/advan.00101.2014

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Ramirez-Sanchez I, Aguilar H, Ceballos G, Villarreal F (2012) (−)-Epicatechin-induced calcium independent eNOS activation: roles of HSP90 and AKT. Mol Cell Biochem 370(1–2):141–150. https://doi.org/10.1007/s11010-012-1405-9

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Moreno-Ulloa A, Mendez-Luna D, Beltran-Partida E, Castillo C, Guevara G, Ramirez-Sanchez I, Correa-Basurto J, Ceballos G, Villarreal F (2015) The effects of (−)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER). Pharmacol Res 100:309–320. https://doi.org/10.1016/j.phrs.2015.08.014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Fisher ND, Hughes M, Gerhard-Herman M, Hollenberg NK (2003) Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J Hypertens 21(12):2281–2286. https://doi.org/10.1097/01.hjh.0000084783.15238.eb

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Gasperotti M, Passamonti S, Tramer F, Masuero D, Guella G, Mattivi F, Vrhovsek U (2015) Fate of microbial metabolites of dietary polyphenols in rats: is the brain their target destination? ACS Chem Neurosci 6(8):1341–1352. https://doi.org/10.1021/acschemneuro.5b00051

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Dangour AD, Dodhia SK, Hayter A, Allen E, Lock K, Uauy R (2009) Nutritional quality of organic foods: a systematic review. Am J Clin Nutr 90(3):680–685. https://doi.org/10.3945/ajcn.2009.28041

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Cochrane Handbook for Systematic Reviews of Interventions (2014) Online Kensaku 35(3): 154–155

  50. 50.

    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, Cochrane Bias Methods Group, Cochrane Statistical Methods Group (2011) The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 343:d5928. https://doi.org/10.1136/bmj.d5928

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Francis ST, Head K, Morris PG, Macdonald IA (2006) The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people. J Cardiovasc Pharmacol 47(Suppl 2):S215–S220

    CAS  Article  Google Scholar 

  53. 53.

    Scholey AB, French SJ, Morris PJ, Kennedy DO, Milne AL, Haskell CF (2010) Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J Psychopharmacol 24(10):1505–1514. https://doi.org/10.1177/0269881109106923

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Desideri G, Kwik-Uribe C, Grassi D, Necozione S, Ghiadoni L, Mastroiacovo D, Raffaele A, Ferri L, Bocale R, Lechiara MC, Marini C, Ferri C (2012) Benefits in cognitive function, blood pressure, and insulin resistance through cocoa flavanol consumption in elderly subjects with mild cognitive impairment: the cocoa, cognition, and aging (CoCoA) study. Hypertension 60(3):794–801. https://doi.org/10.1161/HYPERTENSIONAHA.112.193060

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Brickman AM, Khan UA, Provenzano FA, Yeung LK, Suzuki W, Schroeter H, Wall M, Sloan RP, Small SA (2014) Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci 17(12):1798–1803. https://doi.org/10.1038/nn.3850

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Massee LA, Ried K, Pase M, Travica N, Yoganathan J, Scholey A, Macpherson H, Kennedy G, Sali A, Pipingas A (2015) The acute and sub-chronic effects of cocoa flavanols on mood, cognitive and cardiovascular health in young healthy adults: a randomized, controlled trial. Front Pharmacol 6:93. https://doi.org/10.3389/fphar.2015.00093

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Mastroiacovo D, Kwik-Uribe C, Grassi D, Necozione S, Raffaele A, Pistacchio L, Righetti R, Bocale R, Lechiara MC, Marini C, Ferri C, Desideri G (2015) Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the cocoa, cognition, and aging (CoCoA) study--a randomized controlled trial. Am J Clin Nutr 101(3):538–548. https://doi.org/10.3945/ajcn.114.092189

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Neshatdoust S, Saunders C, Castle SM, Vauzour D, Williams C, Butler L, Lovegrove JA, Spencer JP (2016) High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: two randomised, controlled trials. Nutr Healthy Aging 4(1):81–93. https://doi.org/10.3233/NHA-1615

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Karabay A, Saija JD, Field DT, Akyurek EG (2018) The acute effects of cocoa flavanols on temporal and spatial attention. Psychopharmacology 235(5):1497–1511. https://doi.org/10.1007/s00213-018-4861-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Camfield DA, Scholey A, Pipingas A, Silberstein R, Kras M, Nolidin K, Wesnes K, Pase M, Stough C (2012) Steady state visually evoked potential (SSVEP) topography changes associated with cocoa flavanol consumption. Physiol Behav 105(4):948–957. https://doi.org/10.1016/j.physbeh.2011.11.013

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Pase MP, Scholey AB, Pipingas A, Kras M, Nolidin K, Gibbs A, Wesnes K, Stough C (2013) Cocoa polyphenols enhance positive mood states but not cognitive performance: a randomized, placebo-controlled trial. J Psychopharmacol 27(5):451–458. https://doi.org/10.1177/0269881112473791

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Field DT, Williams CM, Butler LT (2011) Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions. Physiol Behav 103(3–4):255–260. https://doi.org/10.1016/j.physbeh.2011.02.013

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Crews WD Jr, Harrison DW, Wright JW (2008) A double-blind, placebo-controlled, randomized trial of the effects of dark chocolate and cocoa on variables associated with neuropsychological functioning and cardiovascular health: clinical findings from a sample of healthy, cognitively intact older adults. Am J Clin Nutr 87(4):872–880

    CAS  Article  Google Scholar 

  64. 64.

    Haskell-Ramsay CF, Schmitt J, Actis-Goretta L (2018) The impact of epicatechin on human cognition: the role of cerebral blood flow. Nutrients 10(8). https://doi.org/10.3390/nu10080986

    Article  Google Scholar 

  65. 65.

    Barrera-Reyes PK, Hernandez-Ramirez N, Cortes J, Poquet L, Redeuil K, Rangel-Escareno C, Kussmann M, Silva-Zolezzi I, Tejero ME (2018) Gene expression changes by high-polyphenols cocoa powder intake: a randomized crossover clinical study. Eur J Nutr 58:1887–1898. https://doi.org/10.1007/s00394-018-1736-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Actis-Goretta L, Leveques A, Giuffrida F, Destaillats F, Nagy K (2012) Identification of O-methyl-(−)-epicatechin-O-sulphate metabolites by mass-spectrometry after O-methylation with trimethylsilyldiazomethane. J Chromatogr A 1245:150–157. https://doi.org/10.1016/j.chroma.2012.05.042

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Manach C, Milenkovic D, Van de Wiele T, Rodriguez-Mateos A, de Roos B, Garcia-Conesa MT, Landberg R, Gibney ER, Heinonen M, Tomas-Barberan F, Morand C (2017) Addressing the inter-individual variation in response to consumption of plant food bioactives: towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Mol Nutr Food Res 61(6). https://doi.org/10.1002/mnfr.201600557

    Article  Google Scholar 

Download references


PBR and JCN were supported by the NESTLE-INMEGEN Chair for Nutrigenomics.


This research received no external funding.

Author information




All authors contributed to the writing of this review.

Corresponding author

Correspondence to M Elizabeth Tejero.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


The following are available online at www.mdpi.com/xxx/s1, Table S1: Methods for assessment of cognitive processes. (PDF 103 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barrera-Reyes, P.K., de Lara, J.CF., González-Soto, M. et al. Effects of Cocoa-Derived Polyphenols on Cognitive Function in Humans. Systematic Review and Analysis of Methodological Aspects. Plant Foods Hum Nutr 75, 1–11 (2020). https://doi.org/10.1007/s11130-019-00779-x

Download citation


  • Chocolate
  • Flavanols
  • Cocoa flavanols
  • Epicatechin
  • Cognition
  • Brain function
  • Research methods