Plant Foods for Human Nutrition

, Volume 74, Issue 3, pp 405–413 | Cite as

Broken Rice as a Potential Functional Ingredient with Inhibitory Activity of Renin and Angiotensin-Converting Enzyme(ACE)

  • María Pinciroli
  • Paula Aphalo
  • Agustina E. Nardo
  • María C. Añón
  • Alejandra V. QuirogaEmail author
Original Paper


The aim of this work was to evaluate the ability of broken rice, an underutilized industrial by-product, as a potential functional and health promoting ingredient. With this purpose, the ability to inhibit the angiotensin converting enzyme and renin of a rice protein hydrolyzate (RPH) obtained from a high-protein variety of broken rice (var. Nutriar FCAyF) was analyzed (IC50 = 0.87 and 2.7 mg/mL, respectively). RPH was separated by gel permeation chromatography and in a second purification step by RP-HPLC. The sequence of antihypertensive peptides presented in two RP-HPLC fractions was analyzed. Peptides capable of interacting with the active sites of both enzymes were identified. In this study, we demonstrate that the hydrolysis treatment improves functional and biological properties of rice proteins. Protein preparations obtained from a by-product of rice industry, such as broken rice, are a promising ingredient with potentially good biological properties.


Broken rice ACE inhibitory peptides Renin inhibitory peptides Molecular docking analysis 



The authors acknowledge the contribution of Dra. Nora E. Martínez to this work.


This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina), Project PICT-2012- 0937.

Compliance with Ethical Standards

Conflict of Interest

The author declare that they have no conflict of interest.

Supplementary material

11130_2019_754_MOESM1_ESM.docx (123 kb)
ESM 1 (DOCX 122 kb)


  1. 1.
    States U (2017) Statistics of grain and feed. Agric Stat:1–49.
  2. 2.
  3. 3.
    Food and Agriculture Organization (2018) FAO rice market monitor.
  4. 4.
    Pinciroli M, Vidal AA, Añón MC, Martínez EN (2009) Comparison between protein functional properties of two rice cultivars. LWT - Food Sci Technol 42:1605–1610. CrossRefGoogle Scholar
  5. 5.
    Paraman I, Hettiarachchy NS, Schaefer C, Beck MI (2006) Physicochemical properties of rice endosperm proteins extracted by chemical and enzymatic methods. Cereal Chem 83:663–667. CrossRefGoogle Scholar
  6. 6.
    Phongthai S, D’Amico S, Schoenlechner R et al (2018) Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem 240:156–164. CrossRefGoogle Scholar
  7. 7.
    Zhao Q, Xiong H, Selomulya C, Chen XD, Zhong H, Wang S, Sun W, Zhou Q (2012) Enzymatic hydrolysis of rice dreg protein: effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chem 134:1360–1367. CrossRefGoogle Scholar
  8. 8.
    Kannan A, Hettiarachchy NSNS, Lay JOJO, Liyanage R (2010) Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides 31:1629–1634. CrossRefGoogle Scholar
  9. 9.
    Zhang H, Yokoyama WHWH, Zhang H (2012) Concentration-dependent displacement of cholesterol in micelles by hydrophobic rice bran protein hydrolysates. J Sci Food Agric 92:1395–1401. CrossRefGoogle Scholar
  10. 10.
    Shobako N, Ogawa Y, Ishikado A, Harada K, Kobayashi E, Suido H, Kusakari T, Maeda M, Suwa M, Matsumoto M, Kanamoto R, Ohinata K (2018) A novel antihypertensive peptide identified in thermolysin-digested rice bran. Mol Nutr Food Res 62:1–7. CrossRefGoogle Scholar
  11. 11.
    Taniguchi M, Kameda M, Namae T, Ochiai A, Saitoh E, Tanaka T (2017) Identification and characterization of multifunctional cationic peptides derived from peptic hydrolysates of rice bran protein. J Funct Foods 34:287–296. CrossRefGoogle Scholar
  12. 12.
    Agyei D, Bambarandage E, Udenigwe CC (2018) The role of bioinformatics in the discovery of bioactive peptides. In: Reference module in food science. Elsevier, Amsterdam, pp 1–9Google Scholar
  13. 13.
    Meng X-Y, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided-Drug Des 7:146–157. CrossRefGoogle Scholar
  14. 14.
    Juliano BO (1985) Polysacharides, proteins and lipids of rice. In: Rice: chemistry and technology, 2nd edn. American Association of Cereal Chemists, St Paul, pp 59–174Google Scholar
  15. 15.
    Dinnella C, Gargaro MT, Rossano R, Monteleone E (2002) Spectrophotometric assay using o-phtaldialdehyde for the determination of transglutaminase activity on casein. Food Chem 78:363–368. CrossRefGoogle Scholar
  16. 16.
    Quiroga AV, Aphalo P, Nardo AE, Añón MC (2017) In vitro modulation of renin-angiotensin system enzymes by amaranth (Amaranthus hypochondriacus) protein-derived peptides: alternative mechanisms different from ACE inhibition. J Agric Food Chem 65:7415–7423. CrossRefGoogle Scholar
  17. 17.
    Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22CrossRefGoogle Scholar
  18. 18.
    Hurst PL, Lovell-Smith CJ (1981) Optimized assay for serum angiotensin-converting enzyme activity. Clin Chem 27:2048–2052Google Scholar
  19. 19.
    Ferri M, Graen-Heedfeld J, Bretz K, Guillon F, Michelini E, Calabretta MM, Lamborghini M, Gruarin N, Roda A, Kraft A, Tassoni A (2017) Peptide fractions obtained from rice by-products by means of an environment-friendly process show in vitro health-related bioactivities. PLoS One 12:e0170954. CrossRefGoogle Scholar
  20. 20.
    Adebiyi AP, Adebiyi AO, Ogawa T, Muramoto K (2008) Purification and characterisation of antioxidative peptides from unfractionated rice bran protein hydrolysates. Int J Food Sci Technol 43:35–43. CrossRefGoogle Scholar
  21. 21.
    Condés MC, Scilingo AA, Añón MC (2009) Characterization of amaranth proteins modified by trypsin proteolysis. Structural and functional changes. LWT - Food Sci Technol 42:963–970. CrossRefGoogle Scholar
  22. 22.
    Ajibola CF, Fashakin JB, Fagbemi TN, Aluko RE (2013) Renin and angiotensin converting enzyme inhibition with antioxidant properties of African yam bean protein hydrolysate and reverse-phase HPLC-separated peptide fractions. Food Res Int 52:437–444. CrossRefGoogle Scholar
  23. 23.
    Amagliani L, O’Regan J, Kelly AL, O’Mahony JA (2017) The composition, extraction, functionality and applications of rice proteins: a review. Trends Food Sci Technol 64:1–12. CrossRefGoogle Scholar
  24. 24.
    Fabian C, Ju YH (2011) A review on rice bran protein: its properties and extraction methods. Crit Rev Food Sci Nutr 51:816–827. CrossRefGoogle Scholar
  25. 25.
    Aluko RE (2019) Food protein-derived renin-inhibitory peptides: in vitro and in vivo properties. J Food Biochem 43:1–12. CrossRefGoogle Scholar
  26. 26.
    Aluko RE (2015) Antihypertensive peptides from food proteins. Annu Rev Food Sci Technol 6:235–262. CrossRefGoogle Scholar
  27. 27.
    Aluko RE (2015) Structure and function of plant protein-derived antihypertensive peptides. Curr Opin Food Sci 4:44–50CrossRefGoogle Scholar
  28. 28.
    Takahashi S, Tokiwano T, Hata K et al (2010) The occurrence of renin inhibitor in rice: isolation, identification, and structure-function relationship. Biosci Biotechnol Biochem 74:1713–1715. CrossRefGoogle Scholar
  29. 29.
    Alashi AM, Blanchard CL, Mailer RJ, Agboola SO, Mawson AJ, He R, Malomo SA, Girgih AT, Aluko RE (2014) Blood pressure lowering effects of Australian canola protein hydrolysates in spontaneously hypertensive rats. Food Res Int 55:281–287. CrossRefGoogle Scholar
  30. 30.
    Udenigwe CC, Li H, Aluko RE (2012) Quantitative structure-activity relationship modeling of renin-inhibiting dipeptides. Amino Acids 42:1379–1386. CrossRefGoogle Scholar
  31. 31.
    Berek D (2010) Size exclusion chromatography – a blessing and a curse of science and technology of synthetic polymers. J Sep Sci 33:315–335. CrossRefGoogle Scholar
  32. 32.
    Saito Y, Ohura S, Kawato A, Suginami K (1997) Prolyl endopeptidase inhibitors in sake and its byproducts. J Agric Food Chem 45:720–724. CrossRefGoogle Scholar
  33. 33.
    Masuyer G, Schwager SLU, Sturrock ED, Isaac RE, Acharya KR (2012) Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Sci Rep 2:1–10. CrossRefGoogle Scholar
  34. 34.
    Natesh R, Schwager SLU, Sturrock ED, Acharya KR (2003) Crystal structure of the human enzyme – lisinopril complex. Nature 421:1427–1429. CrossRefGoogle Scholar
  35. 35.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Programa Arroz, Facultad de Ciencias Agrarias y Forestales (FCAyF)Universidad Nacional de la PlataLa PlataArgentina
  2. 2.Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Comisión de Investigaciones Científicas (CIC-PBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata)Universidad Nacional de La Plata (UNLP)La PlataArgentina

Personalised recommendations