Advertisement

Plant Foods for Human Nutrition

, Volume 74, Issue 3, pp 277–286 | Cite as

A Review of the Potential of Chilean Native Berries in the Treatment of Obesity and its Related Features

  • Diego F. Garcia-DiazEmail author
  • P. Jimenez
  • M. Reyes-Farias
  • J. Soto-Covasich
  • A. G. V. Costa
Review Article
  • 138 Downloads

Abstract

Obesity is a major worldwide health threat. It is characterized by an abnormal adipose tissue overgrowth together with increased monocytes infiltration, causing inflammation and oxidative stress, events associated with several illnesses. Investigations have focused on the benefits of native fruit consumption, claiming these to be natural sources of bioactive compounds with antioxidant and anti-inflammatory characteristics. It has been widely stated that berries are a source of the most antioxidant compounds, and, thus, seem highly promising to endure research efforts on these vegetal matrices. The present article describes botanical, chemical and biomedical features of the Chilean native berries, Aristotelia chilensis, Ugni molinae, and Berberis microphylla. This work aims to potentiate incoming research focused on the search for novel treatments for first-order diseases with these particular plant sources.

Keywords

Antioxidants Bioactive compounds Chilean native berries Polyphenols Obesity 

Notes

Acknowledgements

This work was supported by the National Commission for Scientific and Technological Research (CONICYT, Chile; FONDECYT Grant 11110219).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Limon-Miro AT, Lopez-Teros V, Astiazaran-Garcia H (2017) Dietary guidelines for breast cancer patients: a critical review. Adv Nutr 8(4):613–623.  https://doi.org/10.3945/an.116.014423 Google Scholar
  2. 2.
    Ribeiro C, Dourado G, Cesar T (2017) Orange juice allied to a reduced-calorie diet results in weight loss and ameliorates obesity-related biomarkers: a randomized controlled trial. Nutrition 38:13–19.  https://doi.org/10.1016/j.nut.2016.12.020 Google Scholar
  3. 3.
    Collese TS, Nascimento-Ferreira MV, de Moraes ACF, Rendo-Urteaga T, Bel-Serrat S, Moreno LA, Carvalho HB (2017) Role of fruits and vegetables in adolescent cardiovascular health: a systematic review. Nutr Rev 75(5):339–349.  https://doi.org/10.1093/nutrit/nux002 Google Scholar
  4. 4.
    van Breda SGJ, de Kok T (2018) Smart combinations of bioactive compounds in fruits and vegetables may guide new strategies for personalized prevention of chronic diseases. Mol Nutr Food Res 62(1).  https://doi.org/10.1002/mnfr.201700597
  5. 5.
    Carraro JC, Hermsdorff HH, Mansego ML, Zulet MA, Milagro FI, Bressan J, Martinez JA (2016) Higher fruit intake is related to TNF-alpha hypomethylation and better glucose tolerance in healthy subjects. J Nutrigenet Nutrigenomics 9(2–4):95–105.  https://doi.org/10.1159/000448101 Google Scholar
  6. 6.
    Cocate PG, Natali AJ, Oliveira A, Longo GZ, Alfenas Rde C, Peluzio Mdo C, Santos EC, Buthers JM, Oliveira LL, Hermsdorff HH (2014) Fruit and vegetable intake and related nutrients are associated with oxidative stress markers in middle-aged men. Nutrition 30(6):660–665.  https://doi.org/10.1016/j.nut.2013.10.015 Google Scholar
  7. 7.
    Hurtado-Barroso S, Quifer-Rada P, Rinaldi de Alvarenga JF, Perez-Fernandez S, Tresserra-Rimbau A, Lamuela-Raventos RM (2018) Changing to a low-polyphenol diet alters vascular biomarkers in healthy men after only two weeks. Nutrients 10(11):E1766.  https://doi.org/10.3390/nu10111766
  8. 8.
    Rice-Evans C (1995) Plant polyphenols: free radical scavengers or chain-breaking antioxidants? Biochem Soc Symp 61:103–116.  https://doi.org/10.1042/bss0610103 Google Scholar
  9. 9.
    Bendich A, Machlin LJ, Scandurra O, Burton GW, Wayner DDM (1986) The antioxidant role of vitamin-C. Adv Free Radical Bio 2(2):419–444.  https://doi.org/10.1016/S8755-9668(86)80021-7 Google Scholar
  10. 10.
    de Kok TM, van Breda SG, Manson MM (2008) Mechanisms of combined action of different chemopreventive dietary compounds: a review. Eur J Nutr 47(Suppl 2):51–59.  https://doi.org/10.1007/s00394-008-2006-y Google Scholar
  11. 11.
    Bray GA (2004) Medical consequences of obesity. J Clin Endocrinol Metab 89(6):2583–2589.  https://doi.org/10.1210/jc.2004-0535 Google Scholar
  12. 12.
    OECD (2018) Obesity update 2017. www.oecd.org/health/obesity-update.htm. Accessed 27 Apr 2019
  13. 13.
    Tremmel M, Gerdtham UG, Nilsson PM, Saha S (2017) Economic burden of obesity: a systematic literature review. Int J Environ Res Public Health 14(4):E435.   https://doi.org/10.3390/ijerph14040435
  14. 14.
    Hruby A, Hu FB (2015) The epidemiology of obesity: a big picture. Pharmacoeconomics 33(7):673–689.  https://doi.org/10.1007/s40273-014-0243-x Google Scholar
  15. 15.
    Pi-Sunyer X (2009) The medical risks of obesity. Postgrad Med 121(6):21–33.  https://doi.org/10.3810/pgm.2009.11.2074 Google Scholar
  16. 16.
    Collaboration NCDRF (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387(10026):1377–1396.  https://doi.org/10.1016/S0140-6736(16)30054-X Google Scholar
  17. 17.
    WHO (2018) Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 27 Apr 2019
  18. 18.
    Reilly SM, Saltiel AR (2017) Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol 13(11):633–643.  https://doi.org/10.1038/nrendo.2017.90 Google Scholar
  19. 19.
    Castoldi A, Naffah de Souza C, Camara NO, Moraes-Vieira PM (2015) The macrophage switch in obesity development. Front Immunol 6:637.  https://doi.org/10.3389/fimmu.2015.00637 Google Scholar
  20. 20.
    He Y, Lu L, Wei X, Jin D, Qian T, Yu A, Sun J, Cui J, Yang Z (2016) The multimerization and secretion of adiponectin are regulated by TNF-alpha. Endocrine 51(3):456–468.  https://doi.org/10.1007/s12020-015-0741-4 Google Scholar
  21. 21.
    Merial C, Bouloumie A, Trocheris V, Lafontan M, Galitzky J (2000) Nitric oxide-dependent downregulation of adipocyte UCP-2 expression by tumor necrosis factor-alpha. Am J Physiol Cell Physiol 279(4):C1100–C1106.  https://doi.org/10.1152/ajpcell.2000.279.4.C1100 Google Scholar
  22. 22.
    Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271(5249):665–668.  https://doi.org/10.1126/science.271.5249.665 Google Scholar
  23. 23.
    Schreckinger ME, Lotton J, Lila MA, de Mejia EG (2010) Berries from South America: a comprehensive review on chemistry, health potential, and commercialization. J Med Food 13(2):233–246.  https://doi.org/10.1089/jmf.2009.0233 Google Scholar
  24. 24.
    Seeram NP (2008) Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56(3):627–629.  https://doi.org/10.1021/jf071988k Google Scholar
  25. 25.
    Manganaris GA, Goulas V, Vicente AR, Terry LA (2014) Berry antioxidants: small fruits providing large benefits. J Sci Food Agric 94(5):825–833.  https://doi.org/10.1002/jsfa.6432 Google Scholar
  26. 26.
    Ruiz A, Hermosin-Gutierrez I, Mardones C, Vergara C, Herlitz E, Vega M, Dorau C, Winterhalter P, von Baer D (2010) Polyphenols and antioxidant activity of Calafate (Berberis microphylla) fruits and other native berries from southern Chile. J Agric Food Chem 58(10):6081–6089.  https://doi.org/10.1021/Jf100173x Google Scholar
  27. 27.
    Miranda-Rottmann S, Aspillaga AA, Perez DD, Vasquez L, Martinez AL, Leighton F (2002) Juice and phenolic fractions of the berry Aristotelia chilensis inhibit LDL oxidation in vitro and protect human endothelial cells against oxidative stress. J Agric Food Chem 50(26):7542–7547.  https://doi.org/10.1021/jf025797n Google Scholar
  28. 28.
    Cespedes CL, El-Hafidi M, Pavon N, Alarcon J (2008) Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chem 107(2):820–829.  https://doi.org/10.1016/j.foodchem.2007.08.092 Google Scholar
  29. 29.
    Urquiaga I, Avila F, Echeverria G, Perez D, Trejo S, Leighton F (2017) A Chilean berry concentrate protects against postprandial oxidative stress and increases plasma antioxidant activity in healthy humans. Oxidative Med Cell Longev 2017:8361493.  https://doi.org/10.1155/2017/8361493 Google Scholar
  30. 30.
    Cespedes CL, Alarcon J, Avila JG, El-Hafidi M (2010) Anti-inflammatory, antioedema and gastroprotective activities of Aristotelia chilensis extracts, part 2. B Latinoam Caribe Pl 9(6):432–439. https://www.redalyc.org/articulo.oa?id=85615688002. Accessed 27 Apr 2019
  31. 31.
    Schreckinger ME, Wang JZ, Yousef G, Lila MA, de Mejia EG (2010) Antioxidant capacity and in vitro inhibition of adipogenesis and inflammation by phenolic extracts of Vaccinium floribundum and Aristotelia chilensis. J Agric Food Chem 58(16):8966–8976.  https://doi.org/10.1021/Jf100975m Google Scholar
  32. 32.
    Munoz O, Christen P, Cretton S, Backhouse N, Torres V, Correa O, Costa E, Miranda H, Delporte C (2011) Chemical study and anti-inflammatory, analgesic and antioxidant activities of the leaves of Aristotelia chilensis (Mol.) Stuntz, Elaeocarpaceae. J Pharm Pharmacol 63(6):849–859.  https://doi.org/10.1111/j.2042-7158.2011.01280.x Google Scholar
  33. 33.
    Rojo LE, Ribnicky D, Logendra S, Poulev A, Rojas-Silva P, Kuhn P, Dorn R, Grace MH, Lila MA, Raskin I (2012) In vitro and in vivo anti-diabetic effects of anthocyanins from Maqui Berry (Aristotelia chilensis). Food Chem 131(2):387–396.  https://doi.org/10.1016/j.foodchem.2011.08.066 Google Scholar
  34. 34.
    Rubilar M, Jara C, Poo Y, Acevedo F, Gutierrez C, Sineiro J, Shene C (2011) Extracts of Maqui (Aristotelia chilensis) and Murta (Ugni molinae Turcz.): sources of antioxidant compounds and alpha-glucosidase/alpha-amylase inhibitors. J Agric Food Chem 59(5):1630–1637.  https://doi.org/10.1021/Jf103461k Google Scholar
  35. 35.
    Reyes-Farias M, Vasquez K, Ovalle-Marin A, Fuentes F, Parra C, Quitral V, Jimenez P, Garcia-Diaz DF (2015) Chilean native fruit extracts inhibit inflammation linked to the pathogenic interaction between adipocytes and macrophages. J Med Food 18(5):601–608.  https://doi.org/10.1089/jmf.2014.0031 Google Scholar
  36. 36.
    Reyes-Farias M, Vasquez K, Fuentes E, Ovalle-Marin A, Parra-Ruiz C, Zamora O, Pino MT, Quitral V, Jimenez P, Garcia L, Garcia-Diaz DF (2016) Extracts of Chilean native fruits inhibit oxidative stress, inflammation and insulin-resistance linked to the pathogenic interaction between adipocytes and macrophages. J Funct Foods 27:69–83.  https://doi.org/10.1016/j.jff.2016.08.052 Google Scholar
  37. 37.
    Cespedes CL, Pavon N, Dominguez M, Alarcon J, Balbontin C, Kubo I, El-Hafidi M, Avila JG (2017) The chilean superfruit black-berry Aristotelia chilensis (Elaeocarpaceae), Maqui as mediator in inflammation-associated disorders. Food Chem Toxicol 108(Pt B):438–450.  https://doi.org/10.1016/j.fct.2016.12.036 Google Scholar
  38. 38.
    Cifuentes F, Palacios J, Paredes A, Nwokocha CR, Paz C (2018) 8-Oxo-9-Dihydromakomakine isolated from Aristotelia chilensis induces vasodilation in rat aorta: role of the extracellular calcium influx. Molecules 23(11):E3050.  https://doi.org/10.3390/molecules23113050
  39. 39.
    Aguirre MC, Delporte C, Backhouse N, Erazo S, Letelier ME, Cassels BK, Silva X, Alegria S, Negrete R (2006) Topical anti-inflammatory activity of 2alpha-hydroxy pentacyclic triterpene acids from the leaves of Ugni molinae. Bioorg Med Chem 14(16):5673–5677.  https://doi.org/10.1016/j.bmc.2006.04.021 Google Scholar
  40. 40.
    Avello M, Pastene E (2004) Actividad antioxidante de infusos de Ugni molinae turcz ("murtilla"). B Latinoam Caribe Pl 4(2):33–39.https://www.redalyc.org/articulo.oa?id=85640205. Accessed 27 Apr 2019
  41. 41.
    Suwalsky M, Orellana P, Avello M, Villena F (2007) Protective effect of Ugni molinae Turcz against oxidative damage of human erythrocytes. Food Chem Toxicol 45(1):130–135.  https://doi.org/10.1016/j.fct.2006.08.010 Google Scholar
  42. 42.
    Jofre I, Pezoa C, Cuevas M, Scheuermann E, Freires IA, Rosalen PL, de Alencar SM, Romero F (2016) Antioxidant and vasodilator activity of Ugni molinae Turcz. (Murtilla) and its modulatory mechanism in hypotensive response. Oxid Med Cell Longev 2016:6513416.  https://doi.org/10.1155/2016/6513416 Google Scholar
  43. 43.
    Albrecht C, Pellarin G, Rojas MJ, Albesa I, Eraso AF (2010) Beneficial effect of Berberis buxifolia lam, Ziziphus mistol Griseb and Prosopis alba extracts on oxidative stress induced by chloramphenicol. Medicina (B Aires) 70(1):65–70 https://www.ncbi.nlm.nih.gov/pubmed/20228027. Accessed 27 Apr 2019
  44. 44.
    Hoffmann A (1991) Flora silvestre de Chile. Zona Araucana. Árboles, arbustos y enredaderas leñosas. Fundación Claudio Gay, Santiago, ChileISBN: 9789567743018Google Scholar
  45. 45.
    Muñoz O, Montes M, Wilkomirsky T (2001) Plantas medicinales de uso en Chile. Química y Farmacología. Editorial Universitaria, Santiago, Chile. http://bibliotecas.uchile.cl/documentos/200799-1529531104.pdf. Accessed 27 Apr 2019
  46. 46.
    Escribano-Bailon MT, Alcalde-Eon C, Munoz O, Rivas-Gonzalo JC, Santos-Buelga C (2006) Anthocyanins in berries of Maqui (Aristotelia chilensis (Mol.) Stuntz). Phytochem Anal 17(1):8–14.  https://doi.org/10.1002/pca.872 Google Scholar
  47. 47.
    Cespedes CL, Valdez-Morales M, Avila JG, El-Hafidi M, Alarcon J, Paredes-Lopez O (2010) Phytochemical profile and the antioxidant activity of Chilean wild black-berry fruits, Aristotelia chilensis (Mol) Stuntz (Elaeocarpaceae). Food Chem 119(3):886–895.  https://doi.org/10.1016/j.foodchem.2009.07.045 Google Scholar
  48. 48.
    Speisky H, Lopez-Alarcon C, Gomez M, Fuentes J, Sandoval-Acuna C (2012) First web-based database on total phenolics and oxygen radical absorbance capacity (ORAC) of fruits produced and consumed within the South Andes region of South America. J Agric Food Chem 60(36):8851–8859.  https://doi.org/10.1021/jf205167k Google Scholar
  49. 49.
    Li J, Yuan C, Pan L, Benatrehina PA, Chai H, Keller WJ, Naman CB, Kinghorn AD (2017) Bioassay-guided isolation of antioxidant and cytoprotective constituents from a Maqui berry (Aristotelia chilensis) dietary supplement ingredient as markers for qualitative and quantitative analysis. J Agric Food Chem 65(39):8634–8642.  https://doi.org/10.1021/acs.jafc.7b03261 Google Scholar
  50. 50.
    Quispe-Fuentes I, Vega-Galvez A, Aranda M (2018) Evaluation of phenolic profiles and antioxidant capacity of maqui (Aristotelia chilensis) berries and their relationships to drying methods. J Sci Food Agric 98(11):4168–4176.  https://doi.org/10.1002/jsfa.8938 Google Scholar
  51. 51.
    Viuda-Martos M, Lucas-Gonzalez R, Ballester-Costa C, Perez-Alvarez JA, Munoz LA, Fernandez-Lopez J (2018) Evaluation of protective effect of different dietary fibers on polyphenolic profile stability of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion. Food Funct 9(1):573–584.  https://doi.org/10.1039/c7fo01671a Google Scholar
  52. 52.
    Davinelli S, Bertoglio JC, Zarrelli A, Pina R, Scapagnini G (2015) A randomized clinical trial evaluating the efficacy of an anthocyanin-Maqui Berry extract (Delphinol(R)) on oxidative stress biomarkers. J Am Coll Nutr 34(Suppl 1):28–33.  https://doi.org/10.1080/07315724.2015.1080108 Google Scholar
  53. 53.
    Hidalgo J, Flores C, Hidalgo MA, Perez M, Yanez A, Quinones L, Caceres DD, Burgos RA (2014) Delphinol(R) standardized maqui berry extract reduces postprandial blood glucose increase in individuals with impaired glucose regulation by novel mechanism of sodium glucose cotransporter inhibition. Panminerva Med 56(2 Suppl 3):1–7. https://www.ncbi.nlm.nih.gov/pubmed/24861886. Accessed 27 Apr 2019
  54. 54.
    Ojeda J, Jara E, Molina L, Parada F, Burgos R, Hidalgo M, Hancke J (2011) Effects of Aristotelia chilensis berry juice on cyclooxygenase 2 expression, NF-KB, NFAT, ERK1/2 and PI3K/Akt activation in colon cancer cells. B Latinoam Caribe Pl 10(6):543–552.https://www.redalyc.org/articulo.oa?id=85622434007. Accessed 27 Apr 2019
  55. 55.
    Fredes C (2009) Antioxidants in Chilean native berries. B Latinoam Caribe Pl 8(6):469–478. https://www.blacpma.usach.cl/sites/blacpma/files/008-006.pdf. Accessed 27 Apr 2019
  56. 56.
    Muñoz C (1970) Flores silvestres de Chile. Santiago, Chile.  https://doi.org/10.5354/0717-8883.1970.22416
  57. 57.
    Rubilar M, Pinelo M, Ihl M, Scheuermann E, Sineiro J, Nunez MJ (2006) Murta leaves (Ugni molinae turcz) as a source of antioxidant polyphenols. J Agric Food Chem 54(1):59–64.  https://doi.org/10.1021/Jf051571j Google Scholar
  58. 58.
    Peña-Neira A, Fredes C, Hurtado M, Santos-Buelga C, Pérez-Alonso J (2007) Low molecular weight phenolic and anthocyanin composition of the Murta (Ugni molinae Turcz.), a Chilean native berry. Paper presented at the International Berry Health Benefits Symposium, Oregon State University, Corvallis OR (USA), June 11-12Google Scholar
  59. 59.
    Junqueira-Goncalves MP, Yanez L, Morales C, Navarro M, A Contreras R, Zuniga GE (2015) Isolation and characterization of phenolic compounds and anthocyanins from Murta (Ugni molinae Turcz.) fruits. Assessment of antioxidant and antibacterial activity. Molecules 20(4):5698–5713.  https://doi.org/10.3390/molecules20045698 Google Scholar
  60. 60.
    Lopez de Dicastillo C, Bustos F, Valenzuela X, Lopez-Carballo G, Vilarino JM, Galotto MJ (2017) Chilean berry Ugni molinae Turcz. fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties. Food Res Int 102:119–128.  https://doi.org/10.1016/j.foodres.2017.09.073 Google Scholar
  61. 61.
    Pena-Cerda M, Arancibia-Radich J, Valenzuela-Bustamante P, Perez-Arancibia R, Barriga A, Seguel I, Garcia L, Delporte C (2017) Phenolic composition and antioxidant capacity of Ugni molinae Turcz. Leaves of different genotypes. Food Chem 215:219–227.  https://doi.org/10.1016/j.foodchem.2016.07.159 Google Scholar
  62. 62.
    Pomilo A (1973) Anthocyanins in fruits of Berberis buxifolia. Phytochemistry 12:218–220. https://kundoc.com/pdf-anthocyanins-in-fruits-of-berberis-buxifolia-.html. Accessed 27 Apr 2019
  63. 63.
    Ruiz A, Zapata M, Sabando C, Bustamante L, von Baer D, Vergara C, Mardones C (2014) Flavonols, alkaloids, and antioxidant capacity of edible wild berberis species from Patagonia. J Agric Food Chem 62(51):12407–12417.  https://doi.org/10.1021/jf502929z Google Scholar
  64. 64.
    Girones-Vilaplana A, Valentao P, Moreno DA, Ferreres F, Garcia-Viguera C, Andrade PB (2012) New beverages of lemon juice enriched with the exotic berries maqui, acai, and blackthorn: bioactive components and in vitro biological properties. J Agric Food Chem 60(26):6571–6580.  https://doi.org/10.1021/jf300873k Google Scholar
  65. 65.
    Bustamante L, Pastene E, Duran-Sandoval D, Vergara C, Von Baer D, Mardones C (2018) Pharmacokinetics of low molecular weight phenolic compounds in gerbil plasma after the consumption of calafate berry (Berberis microphylla) extract. Food Chem 268:347–354.  https://doi.org/10.1016/j.foodchem.2018.06.048 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nutrition, School of MedicineUniversity of ChileSantiagoChile
  2. 2.Biotechnology Doctoral ProgramPontificia Universidad Catolica de Valparaiso - Universidad Tecnica Federico Santa MariaValparaisoChile
  3. 3.Department of Pharmacy and Nutrition, Centre of Exact, Natural and Health SciencesFederal University of Espirito SantoAlegreBrazil

Personalised recommendations