Turmeric Extract: Potential Use as a Prebiotic and Anti-Inflammatory Compound?


Prebiotics are regarded as the non-digestible food constituents that are selectively consumed by health-promoting bacteria (probiotics). In fact, a number of active metabolites is released due to intensive interaction between prebiotics and probiotics in the gut which exert local and systemic beneficial effects including regulation of intestinal disorders and modulation of host immunity. Turmeric is one of the most important medicinal herbaceous that is derived from Curcuma longa rhizome. Curcumin is a well-recognized component of turmeric which contributes to the prevention of multiple inflammatory diseases. Despite curcumin as a well-known compound, few researches have focused on the turmeric extract (TE) and its potential as prebiotic and anti-inflammatory compound. The aim of this study was to evaluate the prebiotic potential and some functional-structural properties of TE. The Fourier-transform-infrared spectroscopy (FTIR) spectrum of TE showed identical peaks that belonged to β configuration in pyranose and glycosidic bonds. High performance liquid chromatography (HPLC) analysis revealed the presence of potent phenolic and flavonoid anti-oxidants and curcuminoids, and some functional monosaccharides. TE demonstrated excellent resistance to artificial human gastric and intestine juice compared to the standard prebiotic (inulin) (p ≤ 0.05). Interestingly, our time course experiment showed that TE not only is digested by probiotics including Lactobacillus rhamnosus GG (LGG) and Bifidobacterium animalis BB12, but also supports the growth of these bacteria even after 72 h (p ≤ 0.05). To our knowledge, this is the first report evaluating prebiotic potential of TE and exploring its suppressive effects on LPS induced IL-8 production in HT29-19A cell line.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Lactobacillus rhamnosus GG


Turmeric extract


  1. 1.

    Mangell P, Nejdfors P, Wang M, Ahrné S, Weström B, Thorlacius H, Jeppsson B (2002) Lactobacillus plantarum 299v inhibits Escherichia coli-induced intestinal permeability. Dig Dis Sci 47:511–516. https://doi.org/10.1023/A:1017947531536

    Article  PubMed  Google Scholar 

  2. 2.

    Hsieh CY, Osaka T, Moriyama E, Date Y, Kikuchi J, Tsuneda S (2015) Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum. Phys Rep 3:1–17. https://doi.org/10.14814/phy2.12327

    CAS  Article  Google Scholar 

  3. 3.

    Blackwood BP, Yuan CY, Wood DR, Nicolas JD, Grothaus JS, Hunter CJ (2017) Probiotic Lactobacillus species strengthen intestinal barrier function and tight junction integrity in experimental necrotizing enterocolitis. J Probiotics Heal 5:457–464. https://doi.org/10.4172/2329-8901.1000159

    Article  Google Scholar 

  4. 4.

    Koh JH, Kim WU (2017) Dysregulation of gut microbiota and chronic inflammatory disease: from epithelial defense to host immunity. Exp Mol Med 49:e337. https://doi.org/10.1038/emm.2017.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Bindels LB, Delzenne NM, Cani PD, Walter J (2015) Opinion: towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 12:303–310. https://doi.org/10.1038/nrgastro.2015.47

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Tomé-Carneiro J, Visioli F (2016) Polyphenol-based nutraceuticals for the prevention and treatment of cardiovascular disease: review of human evidence. Phytomedicine 23:1145–1174. https://doi.org/10.1016/j.phymed.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Zeng Z, Shen ZL, Zhai S, Xu JL, Liang H, Shen Q, Li QY (2017) Transport of curcumin derivatives in Caco-2 cell monolayers. Eur J Pharm Biopharm 117:123–131. https://doi.org/10.1016/j.ejpb.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Aggarwal BB, Yuan W, Li S, Gupta SC (2013) Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: identification of novel components of turmeric. Mol Nutr Food Res 57:1529–1542. https://doi.org/10.1002/mnfr.201200838

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125. https://doi.org/10.1007/978-0-387-46401-5_3

    Article  PubMed  Google Scholar 

  10. 10.

    Chen K, Liang N, Luo X, Zhang TC (2013) Lactobacillus acidophilus strain suppresses the transcription of proinflammatory-related factors in human HT-29 cells. J Microbiol Biotechnol 23:64–68. https://doi.org/10.4014/jmb.1208.04067

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Bai AP, Ouyang Q, Zhang W, Wang CH, Li SF (2004) Probiotics inhibit TNF-α-induced interleukin-8 secretion of HT29 cells. World J Gastroenterol 10:455–457. https://doi.org/10.3748/wjg.v10.i3.455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Verhoeckx K, Cotter P, López-Expósito I, et al (2015) The impact of food bioactives on health: in vitro and ex vivo models. COST Action FA1005, Springer. https://doi.org/10.1007/978-3-319-16104-4

  13. 13.

    Arboleya S, Watkins C, Stanton C, Ross RP (2016) Gut bifidobacteria populations in human health and aging. Front Microbiol 7:1–9. https://doi.org/10.3389/fmicb.2016.01204

    Article  CAS  Google Scholar 

  14. 14.

    Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Niksic M, Vrvic MM, van Griensven LJLD (2014) Dietary polysaccharide extracts of Agaricus brasiliensis fruiting bodies: chemical characterization and bioactivities at different levels of purification. Food Res Int 64:53–64. https://doi.org/10.1016/j.foodres.2014.05.075

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Xu RB, Yang X, Wang J, Zhao HT, Lu WH, Cui J, Cheng CL, Zou P, Huang WW, Wang P, Li WJ, Hu XL (2012) Chemical composition and antioxidant activities of three polysaccharide fractions from pine cones. Int J Mol Sci 13:14262–14277. https://doi.org/10.3390/ijms131114262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Wong JM, Jenkins DJ (2007) Carbohydrate digestibility and metabolic effects. J Nutr 137:2539–2546. https://doi.org/10.1093/jn/137.11.2539S

    Article  Google Scholar 

  17. 17.

    Azmi AFMN, Mustafa S, Hashim DM, Manap YA (2012) Prebiotic activity of polysaccharides extracted from Gigantochloa Levis (buluh beting) shoots. Molecules 17:1635–1651. https://doi.org/10.3390/molecules17021635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Tadayoni M, Sheikh-Zeinoddin M, Soleimanian-Zad S (2015) Isolation of bioactive polysaccharide from acorn and evaluation of its functional properties. Int J Biol Macromol 72:179–184. https://doi.org/10.1016/j.ijbiomac.2014.08.015

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Akbari-Alavijeh S, Soleimanian-Zad S, Sheikh-Zeinoddin M, Hashmi S (2018) Pistachio hull water-soluble polysaccharides as a novel prebiotic agent. Int J Biol Macromol 107:808–816. https://doi.org/10.1016/j.ijbiomac.2017.09.049

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Wichienchot S, Prasertsan P, Hongpattarakere T, Gibson GR, Rastall RA (2006) In vitro fermentation of mixed linkage gluco-oligosaccharides produced by Gluconobacter. Curr Issues Intest Microbiol 7:7–12

    CAS  PubMed  Google Scholar 

  21. 21.

    Hansawasdi C, Kurdi P (2017) Potential prebiotic oligosaccharide mixtures from acidic hydrolysis of rice bran and cassava pulp. Plant Foods Hum Nutr 72:396–403. https://doi.org/10.1007/s11130-017-0636-z

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Wichienchot S, Jatupornpipat M, Rastall RA (2010) Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chem 120:850–857. https://doi.org/10.1016/j.foodchem.2009.11.026

    Article  CAS  Google Scholar 

  23. 23.

    den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340. https://doi.org/10.1194/jlr. R036012

  24. 24.

    Yadav VS, Mishra KP, Singh DP, Mehrotra S, Singh VK (2005) Immunomodulatory effects of curcumin. Immunopharmacol Immunotoxicol 27:485–497. https://doi.org/10.1080/08923970500242244

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Guo Y, Shu L, Zhang C, Su ZY, Kong ANT (2015) Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1. Biochem Pharmacol 94:69–78. https://doi.org/10.1016/j.bcp.2015.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Altamimi M, Abdelhay O, Rastall RA (2016) Effect of oligosaccharides on the adhesion of gut bacteria to human HT-29 cells. Anaerobe 39:136–142. https://doi.org/10.1016/j.anaerobe.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Duary RK, Batish VK, Grover S (2014) Immunomodulatory activity of two potential probiotic strains in LPS-stimulated HT-29 cells. Genes Nutr 9(398):398. https://doi.org/10.1007/s12263-014-0398-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Lehmann S, Hiller J, Van Bergenhenegouwen J et al (2015) In vitro evidence for immune-modulatory properties of non-digestible oligosaccharides: direct effect on human monocyte derived dendritic cells. PLoS One 10:1–15. https://doi.org/10.1371/journal.pone.0132304

    CAS  Article  Google Scholar 

  29. 29.

    Serafini F, Strati F, Ruas-Madiedo P, Turroni F, Foroni E, Duranti S, Milano F, Perotti A, Viappiani A, Guglielmetti S, Buschini A, Margolles A, van Sinderen D, Ventura M (2013) Evaluation of adhesion properties and antibacterial activities of the infant gut commensal Bifidobacterium bifidum PRL2010. Anaerobe 21:9–17. https://doi.org/10.1016/j.anaerobe.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, Rizzello F, Campieri M, Brigidi P (2008) Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol 125:286–292. https://doi.org/10.1016/j.ijfoodmicro.2008.04.012

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Tan Y-F, Li H-L, Lai W-Y, Zhang J-Q (2013) Crude dietary polysaccharide fraction isolated from jackfruit enhances immune system activity in mice. J Med Food 16:663–668. https://doi.org/10.1089/jmf.2012.2565

    Article  CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sabihe Soleimanian-Zad.

Ethics declarations

Conflict of Interest

This research was supported by Isfahan University of Technology (IUT) and Utrecht University. The authors declare that they have no conflict of interest.

Human and Animal Studies

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOC 778 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghiamati Yazdi, F., Soleimanian-Zad, S., van den Worm, E. et al. Turmeric Extract: Potential Use as a Prebiotic and Anti-Inflammatory Compound?. Plant Foods Hum Nutr 74, 293–299 (2019). https://doi.org/10.1007/s11130-019-00733-x

Download citation


  • Turmeric extract
  • Prebiotic
  • Probiotic
  • L rhamnosus
  • GG
  • B animalis
  • BB12