Skip to main content

Concentration of Bioactive Compounds from Elderberry (Sambucus nigra L.) Juice by Nanofiltration Membranes

Abstract

For the first time the chemical profile, physico-chemical parameters, inhibition of carbohydrate hydrolysing enzymes associated with type 2 diabetes, and radical scavenging properties of Sambucus nigra L. (elderberry) juice treated by nanofiltration (NF) were investigated. Three commercial NF membranes with different molecular weight cut-off (MWCO) (400 and 1000 Da) and polymeric material (composite fluoro-polymer and polyethersulphone) were tested. According to HPLC analyses, most part of bioactive compounds were retained by the NF membranes producing a retentate fraction of interest for the production of functional foods. The NP030 membrane, a polyethersulphone membrane with a MWCO of 400 Da, exhibited the highest rejection towards phenolic compounds when compared with the other selected membranes. Accordingly, the produced retentate fractions exhibited the highest radical scavenging activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

IC50 :

Half maximal inhibitory concentration

MWCO:

Molecular weight cut-off

NF:

Nanofiltration

References

  1. Viapiana A, Wesolowski M (2017) The phenolic contents and antioxidant activities of infusions of Sambucus nigra L. Plant Foods Hum Nutr 72:82–87

    CAS  Article  Google Scholar 

  2. Gray AM, Abdel-Wahab YH, Flatt PR (2000) The traditional plant treatment, Sambucus nigra (elder), exhibits insulin-like and insulin-releasing actions in vitro. J Nutr 130:15–20

    CAS  Article  Google Scholar 

  3. Uncini Manganelli RE, Zaccaro L, Tomei PE (2005) Antiviral activity in vitro of Urtica dioica L., Parietaria diffusa M. et K. and Sambucus nigra L. J Ethnopharmacol 98:323–327

    CAS  Article  Google Scholar 

  4. Veberic R, Jakopic J, Stampar F, Schmitzer V (2009) European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem 114:511–515

    CAS  Article  Google Scholar 

  5. Youdim KA, Martin A, Joseph JA (2000) Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radic Biol Med 29:51–60

    CAS  Article  Google Scholar 

  6. Lotito SB, Frei B (2006) Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med 41:1727–1746

    CAS  Article  Google Scholar 

  7. Chang C-F, Cho S, Wang J (2014) (−)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Ann Clin Transl Neurol 1:258–271

    CAS  Article  Google Scholar 

  8. Son TG, Camandola S, Mattson MP (2008) Hormetic dietary phytochemicals. Neuromolecular Med 10:236–246

    CAS  Article  Google Scholar 

  9. Badescu M, Badulescu O, Badescu L, Ciocoiu M (2015) Effects of Sambucus nigra and Aronia melanocarpa extracts on immune system disorders within diabetes mellitus. Pharm Biol 53:533–539

    CAS  Article  Google Scholar 

  10. Tundis R, Loizzo MR, Menichini F (2010) Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev Med Chem 10:315–331

    CAS  Article  Google Scholar 

  11. Li J, Chase HA (2010) Applications of membrane techniques for purification of natural products. Biotechnol Lett 32:601–608

    CAS  Article  Google Scholar 

  12. Cassano A, Conidi C, Ruby-Figueroa R, Castro-Muñoz R (2018) Nanofiltration and tight ultrafiltration membranes for the recovery of polyphenols from agro-food by-products. Int J Mol Sci 19:1–21

    Article  Google Scholar 

  13. Loizzo MR, Pugliese A, Bonesi M, Tenuta MC, Menichini F, Xiao J, Tundis R (2016) Edible flowers: a rich source of phytochemicals with antioxidant and hypoglycemic properties. J Agric Food Chem 64:2467–2474

    CAS  Article  Google Scholar 

  14. Menichini F, Loizzo MR, Bonesi M, Conforti F, De Luca D, Statti GA, de Cindio B, Menichini F, Tundis R (2011) Phytochemical profile, antioxidant, anti-inflammatory and hypoglycemic potential of hydroalcoholic extracts from Citrus medica L. cv Diamante flowers, leaves and fruits at two maturity stages. Food Chem Toxicol 49:1549–1555

    CAS  Article  Google Scholar 

  15. Tundis R, Loizzo MR, Menichini F, Bonesi M, Conforti F, Statti G, De Luca D, de Cindio B, Menichini F (2011) Comparative study on the chemical composition, antioxidant properties and hypoglycaemic activities of two Capsicum annuum L. cultivars (Acuminatum small and Cerasiferum). Plant Foods Hum Nutr 66:261–269

    CAS  Article  Google Scholar 

  16. Tundis R, Menichini F, Loizzo MR, Bonesi M, Solimene U, Menichini F (2012) Studies on the potential antioxidant properties of Senecio stabianus Lacaita (Asteraceae) and its inhibitory activity against carbohydrate-hydrolysing enzymes. Nat Prod Res 26:393–404

    CAS  Article  Google Scholar 

  17. Simone S, Conidi C, Ursino C, Cassano A, Figoli A (2016) Clarification of orange press liquors by PVDF hollow fiber membranes. Membranes 6:1–16

    Article  Google Scholar 

  18. Cassano A, Figoli A, Tagarelli A, Sindona G, Drioli E (2006) Integrated membrane process for the production of highly nutritional kiwi fruit juice. Desalination 189:21–30

    CAS  Article  Google Scholar 

  19. Figoli A, Donato L, Carnevale TR, Statti GA, Menichini F, Drioli E (2006) Bergamot essential oil extraction by pervaporation. Desalination 193:160–165

    CAS  Article  Google Scholar 

  20. Tundis R, Bonesi M, Sicari V, Pellicanò TM, Tenuta MC, Leporini M, Menichini F, Loizzo MR (2016) Poncirus trifoliata (L.) Raf.: chemical composition, antioxidant properties and hypoglycaemic activity via the inhibition of α-amylase and α-glucosidase enzymes. J Funct Foods 25:477–485

    CAS  Article  Google Scholar 

  21. Kapustka LA, Annala AE, Swanson WC (1981) The peroxidase–glucose oxidase system: a new method to determine glucose liberated by carbohydrate degradino soil enzymes. Plant Soil 63:487–490

    CAS  Article  Google Scholar 

  22. Loizzo MR, Tundis R, Chandrika UG, Abeysekera AM, Menichini F, Frega NG (2010) Antioxidant and antibacterial activities on foodborne pathogens of Artocarpus heterophyllus Lam. (Moraceae) leaves extracts. J Food Sci 75:291–295

    Article  Google Scholar 

  23. Wu X, Gu L, Prior RL, McKay S (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 52:7846–7856

    CAS  Article  Google Scholar 

  24. Bermudez-Soto MJ, Tomas-Barberan FA (2004) Evaluation of commercial red fruit juice concentrates as ingredients for antioxidant functional juices. Eur Food Res Technol 219:133–141

    CAS  Article  Google Scholar 

  25. Jakobek L, Seruga M (2012) Influence of anthocyanins, flavonols and phenolic acids on the antiradical activity of berries and small fruits. Int J Food Prop 15:122–133

    CAS  Article  Google Scholar 

  26. Nowak D, Gośliński M, Szwengiel A (2017) Multidimensional comparative analysis of phenolic compounds in organic juices with high antioxidant capacity. J Sci Food Agric 97:2657–2663

    CAS  Article  Google Scholar 

  27. Lee J, Finn CE (2007) Anthocyanins and other polyphenols in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. J Sci Food Agric 87:2665–2675

    CAS  Article  Google Scholar 

  28. Boussu K, Vandecasteele C, Van der Bruggen B (2008) Relation between membrane characteristics and performance in nanofiltration. J Membr Sci 310:51–65

    CAS  Article  Google Scholar 

  29. Conidi C, Cassano A, Ciazzo F, Drioli E (2017) Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. J Food Eng 195:1–13

    CAS  Article  Google Scholar 

  30. Funke I, Melzig MF (2005) Effect of different phenolic compounds on a-amylase activity: screening by microplate-reader based kinetic assay. Pharmazie 60:796–797

    CAS  PubMed  Google Scholar 

  31. Akkarachiyasit S, Charoenlertkul P, Yibchok-anun S, Adisakwattana S (2010) Inhibitory activities of cyanidin and its glycosides and synergistic effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Int J Mol Sci 11:3387–3396

    CAS  Article  Google Scholar 

  32. Tadera K, Minami Y, Takamatsu K, Matsuoka T (2006) Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J Nutr Sci Vitaminol 52:149–153

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Monica R. Loizzo or Alberto Figoli.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest. This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tundis, R., Loizzo, M.R., Bonesi, M. et al. Concentration of Bioactive Compounds from Elderberry (Sambucus nigra L.) Juice by Nanofiltration Membranes. Plant Foods Hum Nutr 73, 336–343 (2018). https://doi.org/10.1007/s11130-018-0686-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-018-0686-x

Keywords

  • Sambucus nigra L.
  • Juice processing
  • Phenols
  • Radical scavenging activity
  • Type 2 diabetes
  • Nanofiltration