Advertisement

Plant Foods for Human Nutrition

, Volume 73, Issue 2, pp 130–136 | Cite as

Chia Oil Extraction Coproduct as a Potential New Ingredient for the Food Industry: Chemical, Physicochemical, Techno-Functional and Antioxidant Properties

  • Juana Fernández-López
  • Raquel Lucas-González
  • Manuel Viuda-Martos
  • Estrella Sayas-Barberá
  • José Angel Pérez-Alvarez
Original Paper
  • 243 Downloads

Abstract

The aim of this work was to characterize the coproduct obtained from chia oil production (cold-pressing) with a view to its possible application in new food product development. For this characterization, the following determinations were made: proximate composition, physicochemical analysis, techno-functional properties, total phenolic and flavonoid content, polyphenolic profile and antioxidant capacity (using four different methods). Chia coproduct showed significantly higher levels of proteins and total dietary fiber and lower levels of fats than chia seeds, pointing to the promising nature of this coproduct as an ingredient of food formulations since it remains a source of high biological value proteins and total dietary fiber (as chia seeds themselves) but with a lower energy value. This chia coproduct presents similar techno-functional properties to the original chia seeds and significantly higher levels of polyphenolic compounds and, consequently, higher antioxidant activity.

Keywords

Chia coproduct Polyphenolic compounds Antioxidant Techno-functional properties 

Notes

Acknowledgements

This research was supported by the Ministerio de Economía, Industria y Competitividad (MINECO) of Spain through the project: GL2016-75687- C2-2- R (AEI/FEDER, UE).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest and that this article does not contain any studies with human or animal subjects.

References

  1. 1.
    Porras-Loaiza P, Jiménez-Munguía T, Sosa-Morales ME, Palou E, López-Malo A (2014) Physical properties, chemical characterization and fatty acid composition of Mexican chia (Salvia hispanica L.) seeds. Int J Food Sci Technol 49:571–577CrossRefGoogle Scholar
  2. 2.
    Borneo R, Aguirre A, León AE (2010) Chia (Salvia hispanica L) gel can be used as egg or oil replacer in cake formulations. J Am Diet Assoc 110:946–949CrossRefPubMedGoogle Scholar
  3. 3.
    Ayerza R, Coates W (2011) Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Ind Crop Prod 34:1366–1371CrossRefGoogle Scholar
  4. 4.
    Capitani MI, Spotorno V, Nolasco SM, Tomás MC (2012) Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT-Food Sci Technol 45:94–102CrossRefGoogle Scholar
  5. 5.
    Landete JM (2012) Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health. Crit Rev Food Sci Nutr 52:936–948CrossRefPubMedGoogle Scholar
  6. 6.
    Dubois V, Breton S, Linder M, Fanni J, Parmentier M (2007) Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur J Lipid Sci Technol 109:710–732CrossRefGoogle Scholar
  7. 7.
    Ixtaina VY, Martínez ML, Spotorno V, Mateo CM, Maestri DM, Diehl BWK (2011) Characterization of chia seed oils obtained by pressing and solvent extraction. J Food Compos Anal 24:166–174CrossRefGoogle Scholar
  8. 8.
    Norlaily MA, Swee KY, Wan YH, Boon KB, Shean WT, Soon GT (2012) The promising future of chia, Salvia hispanica L. J Biomed Biotechnol 2012:1–9Google Scholar
  9. 9.
    Blasa M, Candiracci M, Accorsi A, Piacentini MP, Albertini MC, Piatti E (2006) Raw Millefiori honey is packed full of antioxidants. Food Chem 97:217–222CrossRefGoogle Scholar
  10. 10.
    AOAC (1999) Official methods of analysis of AOAC international, 16th edn. Association of Official Analytical Chemists, Washington, DCGoogle Scholar
  11. 11.
    Robertson JA, de Monredon FD, Dysseler P, Guillon F, Amado R, Thibault JF (2000) Hydratation properties of dietary fiber and resistant starch: a European collaborative study. LWT-Food Sci Technol 33:72–79CrossRefGoogle Scholar
  12. 12.
    Chau C, Huang Y (2004) Characterization of passion fruit seed fibres - a potential fibre source. Food Chem 85:189–194CrossRefGoogle Scholar
  13. 13.
    Gómez-Ordóñez E, Jiménez-Escrig A, Rupérez P (2010) Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res Int 43:2289–2294CrossRefGoogle Scholar
  14. 14.
    Bailina C (2014) Caracterización y comportamiento de extractos procedentes de coproductos de la industria alimentaria en un sistema modelo de digestión in vitro. MSc Thesis. Universidad Miguel Hernández, Alicante, SpainGoogle Scholar
  15. 15.
    Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158 Retrieved from http://www.goo.gl/MVnYF9 Google Scholar
  16. 16.
    Lucas-Gonzalez R, Navarro-Coves S, Pérez-Álvarez JA, Fernández-López J, Muñoz LA, Viuda-Martos M (2016) Assessment of polyphenolic profile stability and changes in the antioxidant potential of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion. Ind Crop Prod 94:774–782CrossRefGoogle Scholar
  17. 17.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30CrossRefGoogle Scholar
  18. 18.
    Oyaizu M (1986) Studies on products of browning reaction: antioxidative activity of products of browning reaction prepared from glucosamine. Jap J Nutr 44:307–315CrossRefGoogle Scholar
  19. 19.
    Gullón B, Pintado ME, Barber X, Fernández-López J et al (2015) Bioaccessibility, changes in the antioxidant potential and colonic fermentation of date pits and apple bagasse flours obtained from co-products during simulated in vitro gastrointestinal digestion. Food Res Int 78:169–176CrossRefPubMedGoogle Scholar
  20. 20.
    Carter P (1971) Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal Biochem 40:450–458CrossRefPubMedGoogle Scholar
  21. 21.
    Pereira da Silva B, Anunciação PC, da Silva Matyelka JC, Della Lucia CM, Duarte Martino HS, Pinheiro-Sant’Ana HM (2017) Chemical composition of Brazilian chia seeds grown in different places. Food Chem 221:1709–1716CrossRefGoogle Scholar
  22. 22.
    Dhingra D, Michael M, Rajput H, Patil RT (2012) Dietary fibre in foods: a review. J Food Sci Technol 49:255–266CrossRefPubMedGoogle Scholar
  23. 23.
    Sukhneet S, Santosh JP, Jyoti G (2016) Chia seed (Salvia hispanica l.) – a new age functional food. Int J Adv Technol Eng Sci 4:286–299 Retrieved from http://www.goo.gl/KFFkWY Google Scholar
  24. 24.
    Segura-Campos MR, Ciau-Solís N, Rosado-Rubio G, Chel-Guerrero L, Betancur-Ancona D (2014) Chemical and functional properties of chia seed (Salvia hispanica L.) gum. Int J Food Sci 2014:1–5CrossRefGoogle Scholar
  25. 25.
    Muñoz L, Cobos A, Díaz O, Aguilera JM (2012) Chia seeds: microstructure, mucilage extraction and hydration. J Food Eng 108:216–224CrossRefGoogle Scholar
  26. 26.
    Reyes-Caudillo E, Tecante A, Valdivia-López MA (2008) Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem 107:656–663CrossRefGoogle Scholar
  27. 27.
    Saura-Calixto F, García-Alonso A (2001) Metodología para el análisis de fibra y carbohidratos. In: Lajolo FM, Saura-Calixto F, Witting E, de Menezes W (eds) Fibra dietética en Iberoamérica: Tecnología y Salud. Obtención, caracterización, efecto fisiológico y aplicación en alimentos. Livraría LTDA, Sâo Paulo, p 17e25Google Scholar
  28. 28.
    Chaparro-Acuña SP, Gil-González JH, Aristizabal-Torres ID (2012) Physicochemical characteristics and functional properties of vitabosa (Mucuna deeringiana) and soybean (Glycine max). Ciênc Tecnol Aliment Campinas 32:98–105CrossRefGoogle Scholar
  29. 29.
    Bosquez ME (2005) Desarrollo de recubrimientos comestibles formulados con goma de mezquite y cera de candelilla para la conservación de frutas. Universidad Autónoma Metropolitana Iztapalapa, BiotecnologíaGoogle Scholar
  30. 30.
    Yadav MP, Moreau RA, Hicks KB (2007) Phenolic acids, lipids, and proteins associated with purified corn fiber arabinoxylans. J Agric Food Chem 55:943–947CrossRefPubMedGoogle Scholar
  31. 31.
    Irakli MN, Samanidou VF, Biliaderis CG, Papadoyannis IN (2012) Simultaneous determination of phenolic acids and flavonoids in rice using solid-phase extraction and RP-HPLC with photodiode array detection. J Sep Sci 35:1603–1611CrossRefPubMedGoogle Scholar
  32. 32.
    Repo de Carrasco R, Encina-Zelada CR (2008) Determinación de la capacidad antioxidante y compuestos fenólicos de cereales andinos: quinua (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) y kiwicha (Amaranthus caudatus). Rev Soc Quim Perú 74:85–99 Retrieved from http://www.goo.gl/WRuKCG Google Scholar
  33. 33.
    Pellegrini M, Lucas-González R, Sayas-Barberá E, Fernández-López J, Pérez-Alvarez JA, Viuda-Martos M (2018) Bioaccessibility of phenolic compounds and antioxidant capacity of chia seeds. Plant Foods Hum Nutr 73:47–53CrossRefPubMedGoogle Scholar
  34. 34.
    Sargi SC, Silva BC, Munise H, Fernández P, Schuelter J, Oliveira O Jr, Evelázio N, Vergilio J (2013) Antioxidant capacity and chemical composition in seeds rich in omega-3: chia, flax, and perilla. Food Sci Technol (Campinas) 33:541–548CrossRefGoogle Scholar
  35. 35.
    Malencic D, Maksimovic Z, Popovic M, Niladinovic J (2008) Polyphenol content and antioxidant activity of soybean seed extracts. Bioresour Technol 99:6688–6691CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IPOA Research Group (UMH-1 and REVIV-Generalitat Valenciana), Agro-Food Technology Department, Escuela Politécnica Superior de OrihuelaMiguel Hernández UniversityAlicanteSpain

Personalised recommendations