Skip to main content
Log in

Simulated Gastrointestinal Digestion, Bioaccessibility and Antioxidant Capacity of Polyphenols from Red Chiltepin (Capsicum annuum L. Var. glabriusculum) Grown in Northwest Mexico

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript


Chiltepin, a wild chili mostly used in different traditional foods and traditional medicine in Northwest Mexico, represents a source of polyphenols. However, studies about the bioaccessibility of polyphenols as a parameter to measure the nutritional quality and bioefficacy of them in the fruit after consumption are scarce. Chiltepin showed phenolic acids and flavonoids contents between 387 and 65 μg/g, respectively. Nevertheless, these values decreased after the digestion process. Before digestion, gallic acid, 4-hydroxibenzoinc acid, chlorogenic acid, caffeic acid, p-coumaric acid, quercetin and luteolin were the main polyphenols found in chiltepin by HPLC-DAD and confirmed by FIA-ESI-IT-MS/MS. Gallic and chlorogenic acids were non-detected in the gastric phase, while only p-coumaric acid (5.35 ± 3.89 μg/g), quercetin (5.91 ± 0.92 μg/g) and luteolin (2.86 ± 0.62 μg/g) were found in the intestinal phase. The bioaccessibility of phenolic acids, flavonoids, and total polyphenols after the intestinal phase was around 24, 17 and 23%, respectively. Overall, results indicated that release of polyphenols from chiltepin fruit might be affected by the food matrix and gastrointestinal conditions due to the low bioaccessibility values observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Materska M, Perucka I (2005) Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J Agric Food Chem 53(5):1750–1756.

    Article  CAS  PubMed  Google Scholar 

  2. Hayano-Kanashiro C, Gamez-Meza N, Medina-Juárez LA (2016) Wild pepper Capsicum annuum L. var. glabriusculum: taxonomy, plant morphology, distribution, genetic diversity, genome sequencing, and phytochemical compounds. Crop Sci 56(1):1–11.

    Article  CAS  Google Scholar 

  3. Hervert-Hernández D, Sáyago-Ayerdi SG, Goñi I (2010) Bioactive compounds of four hot pepper varieties (Capsicum annuum L.), antioxidant capacity, and intestinal bioaccessibility. J Agric Food Chem 58(6):3399–3406.

    Article  CAS  PubMed  Google Scholar 

  4. Velderrain-Rodríguez GR, Palafox-Carlos H, Wall-Medrano A, Ayala-Zavala JF, Chen CYO, Robles-Sánchez M, Astiazaran-García H, Alvarez-Parrilla E, González-Aguilar GA (2014) Phenolic compounds: their journey after intake. Food Funct 5(2):189–197.

    Article  PubMed  Google Scholar 

  5. González-Casado S, Martín-Belloso O, Elez-Martínez P, Soliva-Fortuny R (2018) Application of pulsed electric fields to tomato fruits for enhancing the bioaccessibility of carotenoids in derived products. Food Funct.

  6. Juániz I, Ludwig IA, Bresciani L, Dall'Asta M, Mena P, del Rio D, Cid C, de Peña MP (2016) Catabolism of raw and cooked green pepper (Capsicum annuum) (poly) phenolic compounds after simulated gastrointestinal digestion and fecal fermentation. J Funct Foods 27:201–213.

    Article  CAS  Google Scholar 

  7. Goñi I, Díaz-Rubio ME, Pérez-Jiménez J, Saura-Calixto F (2009) Towards an updated methodology for measurement of dietary fiber, including associated polyphenols, in food and beverages. Food Res Int 42(7):840–846.

    Article  CAS  Google Scholar 

  8. Saura-Calixto F (2011) Dietary fiber as a carrier of dietary antioxidants: an essential physiological function. J Agric Food Chem 59(1):43–49.

    Article  CAS  PubMed  Google Scholar 

  9. Saura-Calixto F, García-Alonso A, Goñi I, Bravo L (2000) In vitro determination of the indigestible fraction in foods: an alternative to dietary fiber analysis. J Agric Food Chem 48(8):3342–3347.

  10. Karadag A, Ozcelik B, Saner S (2009) Review of methods to determine antioxidant capacities. Food Anal Method 2(1):41–60.

    Article  Google Scholar 

  11. Rochín-Wong C, Gámez-Meza N, Montoya-Ballesteros L, Medina-Juárez L (2013) Effect of drying and pickling processes on antioxidant capacity of phytochemicals of chiltepin (Capsicum annuum L. var. glabriusculum). Rev Mex Ing Quim 12(2):227–239.

  12. Craft BD, Kerrihard AL, Amarowicz R, Pegg RB (2012) Phenol-based antioxidants and the in vitro methods used for their assessment. Compr Rev Food Sci Food Saf 11(2):148–173.

  13. Kamiloglu S, Capanoglu E, Bilen FD, Gonzales GB, Grootaert C, van de Wiele T, van Camp J (2016) Bioaccessibility of polyphenols from plant-processing byproducts of black carrot (Daucus carota L.). J Agric Food Chem 64(12):2450–2458.

    Article  CAS  PubMed  Google Scholar 

  14. Blanco-Ríos AK, Medina-Juárez LA, González-Aguilar GA, Gámez-Meza N (2013) Antioxidant activity of the phenolic and oily fractions of different sweet bell peppers. J Mex Chem Soc 57(2):137–143.

  15. Kaulmann A, André CM, Schneider Y-J, Hoffmann L, Bohn T (2016) Carotenoid and polyphenol bioaccessibility and cellular uptake from plum and cabbage varieties. Food Chem 197:325–332.

    Article  CAS  PubMed  Google Scholar 

  16. Mosele JI, Macià A, Romero M-P, Motilva M-J (2016) Stability and metabolism of Arbutus unedo bioactive compounds (phenolics and antioxidants) under in vitro digestion and colonic fermentation. Food Chem 201:120–130.

    Article  CAS  PubMed  Google Scholar 

  17. Ortega N, Reguant J, Romero M-P, Macià A et al (2009) Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model. J Agric Food Chem 57(13):5743–5749.

  18. Pellegrini M, Lucas-Gonzalez R, Sayas-Barberá E, Fernández-Lopez J et al (2018) Bioaccesibility of phenolic compounds and antioxidant capacity of chia (Salvia hispanica L.) seeds. Plant Foods Hum Nutr 73(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, Reed J, Calani L, Mena P, del Rio D, Crozier A (2014) Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 88(10):1803–1853.

    Article  CAS  PubMed  Google Scholar 

  20. Hollman PCH (2004) Absorption, bioavailability, and metabolism of flavonoids. Pharm Biol 42(sup1):74–83.

    Article  CAS  Google Scholar 

  21. Croft KD (2016) Dietary polyphenols: antioxidants or not? Arch Biochem Biophys 595:120–124.

    Article  CAS  PubMed  Google Scholar 

Download references


The authors would like to thank CONACYT (291126-UNISON MOD.ORD./68/2016) for the support given during this research. We also thank to chiltepin farmers: Juan Bautista Teran Fraijo and María del Socorro Fraijo Encinas for the facilities provided to get the wild seeds and fruits of chiltepin.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Maribel Ovando-Martínez or Luis Angel Medina-Juárez.

Ethics declarations

Conflict of Interest

All the authors declare they have no conflict of interest. This article does not contain any studies with human or animal subjects.

Electronic supplementary material


(DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovando-Martínez, M., Gámez-Meza, N., Molina-Domínguez, C.C. et al. Simulated Gastrointestinal Digestion, Bioaccessibility and Antioxidant Capacity of Polyphenols from Red Chiltepin (Capsicum annuum L. Var. glabriusculum) Grown in Northwest Mexico. Plant Foods Hum Nutr 73, 116–121 (2018).

Download citation

  • Published:

  • Issue Date:

  • DOI: