Skip to main content

Guava (Psidium guajava L. cv. Red Suprema) Crude Extract Protect Human Dermal Fibroblasts against Cytotoxic Damage Mediated by Oxidative Stress

Abstract

We analyzed guava fruits (Psidium guajava L. cv. Red Suprema) from Cuba to determine their chemical composition, total antioxidant capacity, as well as their protective effect against oxidative damage using an in vitro model of human dermal fibroblasts. The guava fruit is a natural source of bioactive compounds, such as polyphenols, vitamin C, folates and beta carotenes with proven health benefits. Human dermal fibroblasts were pre-incubated with different concentrations of guava crude extract and then subjected to oxidative stress using the AAPH stressor. The number of apoptotic and dead cells, as well as the markers of oxidative damage such as lipid and protein oxidation significantly decreased when cells were pre-incubated with guava crude extract and then exposed to the stressor. The activity of antioxidant enzymes also improved when cells were pre-incubated with guava crude extract in comparison to cells subjected to stress without prior pre-incubation with the guava extract. The results obtained in this study highlight the health benefits of guava regarding oxidative stress, proving it to be an important source of bioactive compounds associated with important biological properties.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

AAPH:

2,2′-azobis(2-amidinopropane) dihydrochloride

CAT:

Catalase

DPPH:

2,2-diphenyl-1-picrylhydrazyl

GCExt:

Guava crude extract

HDFa:

Human dermal fibroblasts, adult

SOD:

Superoxide dismutase

TAC:

Total antioxidant capacity

TBARS:

Thiobarbituric acid reactive substances

TPC:

Total phenolic content

TFC:

Total flavonoid content

References

  1. 1.

    Chiva-Blanch G, Visioli F (2012) Polyphenols and health: moving beyond antioxidants. J Berry Res 2(2):63–71. https://doi.org/10.3233/JBR-2012-028

    CAS  Google Scholar 

  2. 2.

    Giampieri F, Alvarez-Suarez JM, Battino M (2014) Strawberry and human health: effects beyond antioxidant activity. J Agric Food Chem 62(18):3867–3876. https://doi.org/10.1021/jf405455n

    CAS  Article  Google Scholar 

  3. 3.

    Na H-K, Surh Y-J (2008) Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol 46(4):1271–1278. https://doi.org/10.1016/j.fct.2007.10.006

    CAS  Article  Google Scholar 

  4. 4.

    Giampieri F, Forbes-Hernandez TY, Gasparrini M, Afrin S, Cianciosi D, Reboredo-Rodriguez P, Varela-Lopez A, Quiles JL, Mezzetti B, Battino M (2017) The healthy effects of strawberry bioactive compounds on molecular pathways related to chronic diseases. Ann NY Acad Sci 1398(1):62–71. https://doi.org/10.1111/nyas.13373

    CAS  Article  Google Scholar 

  5. 5.

    Giampieri F, Alvarez-Suarez JM, Cordero MD, Gasparrini M, Forbes-Hernandez TY, Afrin S, Santos-Buelga C, González-Paramás AM, Astolfi P, Rubini C, Zizzi A, Tulipani S, Quiles JL, Mezzetti B, Battino M (2017) Strawberry consumption improves aging-associated impairments, mitochondrial biogenesis and functionality through the AMP-activated protein kinase signaling cascade. Food Chem 234:464–471. https://doi.org/10.1016/j.foodchem.2017.05.017

    CAS  Article  Google Scholar 

  6. 6.

    Gasparrini M, Forbes-Hernandez TY, Giampieri F, Afrin S, Alvarez-Suarez JM, Mazzoni L, Mezzetti B, Quiles JL, Battino M (2017) Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages. Food Chem Toxicol 102:1–10. https://doi.org/10.1016/j.fct.2017.01.018

    CAS  Article  Google Scholar 

  7. 7.

    Selani MM, Bianchini A, Ratnayake WS, Flores RA, Massarioli AP, de Alencar SM, Canniatti Brazaca SG (2016) Physicochemical, functional and antioxidant properties of tropical fruits co-products. Plant Foods Hum Nutr 71(2):137–144. https://doi.org/10.1007/s11130-016-0531-z

    CAS  Article  Google Scholar 

  8. 8.

    Sanda KA, Grema HA, Geidam YA, Bukar-Kolo YM (2011) Pharmacological aspects of Psidium guajava: an update. Int J Pharmacol 7(3):316–324. https://doi.org/10.3923/ijp.2011.316.324

  9. 9.

    Morton JF, Dowling CF (1987) Fruits of warm climates. Creative Resources System, Inc, Florida

    Google Scholar 

  10. 10.

    Flores G, Dastmalchi K, Wu SB, Whalen K, Dabo AJ, Reynertson KA, Foronjy RF, D'Armiento JM, Kennelly EJ (2013) Phenolic-rich extract from the Costa Rican guava (Psidium friedrichsthalianum) pulp with antioxidant and anti-inflammatory activity. Potential for COPD therapy. Food Chem 141(2):889–895. https://doi.org/10.1016/j.foodchem.2013.03.025

    CAS  Article  Google Scholar 

  11. 11.

    Lin CY, Yin MC (2012) Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice. Plant Foods Hum Nutr 67(3):303–308. https://doi.org/10.1007/s11130-012-0294-0

    CAS  Article  Google Scholar 

  12. 12.

    Rodríguez-Medina NN, Valdés-Infante J, González G, Fuentes V, Cañizares J (2010) Genetic resources of guava (Psidium guajava) in Cuba: germplasm characterization and breeding. Acta Hortic 849:341–348. https://doi.org/10.17660/ActaHortic.2010.849.40

  13. 13.

    Pino JA, Bent L (2013) Odour-active compounds in guava (Psidium guajava L. cv. Red Suprema). J Sci Food Agric 93(12):3114–3120. https://doi.org/10.1002/jsfa.6153

  14. 14.

    Tulipani S, Mezzetti B, Capocasa F, Bompadre S, Beekwilder J, de Vos CHR, Capanoglu E, Bovy A, Battino M (2008) Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. J Agric Food Chem 56(3):696–704. https://doi.org/10.1021/jf0719959

    CAS  Article  Google Scholar 

  15. 15.

    Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

    CAS  Article  Google Scholar 

  16. 16.

    Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50(10):3010–3014. https://doi.org/10.1021/jf0115589

    CAS  Article  Google Scholar 

  17. 17.

    Giampieri F, Alvarez-Suarez JM, Mazzoni L, Forbes-Hernandez TY, Gasparrini M, Gonzalez-Paramas AM, Santos-Buelga C, Quiles JL, Bompadre S, Mezzetti B, Battino M (2014) An anthocyanin-rich strawberry extract protects against oxidative stress damage and improves mitochondrial functionality in human dermal fibroblasts exposed to an oxidizing agent. Food Funct 5(8):1939–1948. https://doi.org/10.1039/C4FO00048J

    CAS  Article  Google Scholar 

  18. 18.

    Shohag MJI, Wei YY, Yu N, Zhang J, Wang K, Patring J, He ZL, Yang XE (2011) Natural variation of folate content and composition in spinach (Spinacia oleracea) germplasm. J Agric Food Chem 59(23):12520–12526. https://doi.org/10.1021/jf203442h

  19. 19.

    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    CAS  Article  Google Scholar 

  20. 20.

    Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76. https://doi.org/10.1006/abio.1996.0292

    CAS  Article  Google Scholar 

  21. 21.

    Alvarez-Suarez JM, Giampieri F, Cordero M, Gasparrini M, Forbes-Hernández TY, Mazzoni L, Afrin S, Beltrán-Ayala P, González-Paramás AM, Santos-Buelga C, Varela-Lopez A, Quiles JL, Battino M (2016) Activation of AMPK/Nrf2 signalling by Manuka honey protects human dermal fibroblasts against oxidative damage by improving antioxidant response and mitochondrial function promoting wound healing. J Funct Foods 25:38–49. https://doi.org/10.1016/j.jff.2016.05.008

    CAS  Article  Google Scholar 

  22. 22.

    Aebi H (1984) Catalase in vitro. Methods Enzymol 105. Academic Press, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

  23. 23.

    Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21(2):130–132

    CAS  Google Scholar 

  24. 24.

    Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz A-G, Ahn B-W, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186. Academic Press, 464–478. https://doi.org/10.1016/0076-6879(90)86141-H

  25. 25.

    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    CAS  Article  Google Scholar 

  26. 26.

    Jiang ZY, Hunt JV, Wolff SP (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 202(2):384–389. https://doi.org/10.1016/0003-2697(92)90122-N

    CAS  Article  Google Scholar 

  27. 27.

    Flores G, Wu SB, Negrin A, Kennelly EJ (2015) Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food Chem 170:327–335. https://doi.org/10.1016/j.foodchem.2014.08.076

  28. 28.

    Giampieri F, Tulipani S, Alvarez-Suarez JM, Quiles JL, Mezzetti B, Battino M (2012) The strawberry: composition, nutritional quality, and impact on human health. Nutrition 28(1):9–19. https://doi.org/10.1016/j.nut.2011.08.009

    CAS  Article  Google Scholar 

  29. 29.

    Kaume L, Howard LR, Devareddy L (2012) The blackberry fruit: a review on its composition and chemistry, metabolism and bioavailability, and health benefits. J Agric Food Chem 60(23):5716–5727. https://doi.org/10.1021/jf203318p

    CAS  Article  Google Scholar 

  30. 30.

    Rao AV, Snyder DM (2010) Raspberries and human health: a review. J Agric Food Chem 58(7):3871–3883. https://doi.org/10.1021/jf903484g

    CAS  Article  Google Scholar 

  31. 31.

    Alvarez-Suarez JM, Carrillo-Perdomo E, Aller A, Giampieri F, Gasparrini M, González-Pérez L, Beltrán-Ayala P, Battino M (2017) Anti-inflammatory effect of Capuli cherry against LPS-induced cytotoxic damage in RAW 264.7 macrophages. Food Chem Toxicol 102:46–52. https://doi.org/10.1016/j.fct.2017.01.024

    CAS  Article  Google Scholar 

  32. 32.

    Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins Byrne D (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compost Anal 19(6–7):669–675. https://doi.org/10.1016/j.jfca.2006.01.003

    CAS  Article  Google Scholar 

  33. 33.

    Vasconcelos AG, Amorim ADGN, dos Santos RC, Souza JMT, de Souza LKM, Araújo TDSL, Nicolau LAD, de Lima CL, de Aquino PEA, da Silva MC, Ropke CD, Soares PMG, Kuckelhaus SAS, Medeiros JVR, Leite JRDSA (2017) Lycopene rich extract from red guava (Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice. Food Res Int 99:959–968. https://doi.org/10.1016/j.foodres.2017.01.017

    CAS  Article  Google Scholar 

  34. 34.

    USDA National Nutrient Database for Standard Reference Release 28 (2017) https://ndb.nal.usda.gov/ndb/foods/show/2246?fgcd=&manu=&lfacet=&format=&count=&max=50&offset=&sort=default&order=asc&qlookup=Psidium+guajava+&ds=&qt=&qp=&qa=&qn=&q=&ing=. Accessed 10/05/2017 2017

  35. 35.

    Niki E (2011) Antioxidant capacity: which capacity and how to assess it? J Berry Res 1(4):169–176. https://doi.org/10.3233/JBR-2011-018

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Francesca Giampieri or Maurizio Battino.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 12.3 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Suarez, J.M., Giampieri, F., Gasparrini, M. et al. Guava (Psidium guajava L. cv. Red Suprema) Crude Extract Protect Human Dermal Fibroblasts against Cytotoxic Damage Mediated by Oxidative Stress. Plant Foods Hum Nutr 73, 18–24 (2018). https://doi.org/10.1007/s11130-018-0657-2

Download citation

Keywords

  • Guava fruit
  • Antioxidant capacity
  • Human dermal fibroblast
  • Oxidative stress