Skip to main content

Advertisement

Log in

Melanoma Inhibition by Anthocyanins Is Associated with the Reduction of Oxidative Stress Biomarkers and Changes in Mitochondrial Membrane Potential

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Anthocyanins are water soluble pigments which have been proved to exhibit health benefits. Several studies have investigated their effects on several types of cancer, but little attention has been given to melanoma. The phytochemical content of nine different berry samples was assessed by liquid chromatography followed by electrospray ionization mass spectrometry (LC-ESI+-MS). Twenty-six anthocyanins were identified, after a previous C18 Sep-pak clean-up procedure. Chokeberry and red grape anthocyanins rich extracts (C-ARE and RG-ARE) were selected to be tested on normal and melanoma cell lines, due to their different chemical pattern. C-ARE composition consists of cyanidin aglycone glycosylated with different sugars; while RG-ARE contains glucosylated derivatives of five different aglycones. Both C-ARE and RG-ARE anthocyanins reduced proliferation, increased oxidative stress biomarkers and diminished mitochondrial membrane potential in melanoma cells, having no negative influence on normal cells. A synergistic response may be attributed to the five different aglycones present in RG-ARE, which proved to exert greater effects on melanoma cells than the mixture of cyanidin derivatives with different sugars (C-ARE). In conclusion, C-ARE and RG-ARE anthocyanins may inhibit melanoma cell proliferation and increase the level of oxidative stress, with opposite effect on normal cells. Therefore, anthocyanins might be recommended as active ingredients for cosmetic and nutraceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AREs:

Anthocyanin rich extract

LC–ESI-MS:

Liquid chromatography followed by electrospray ionization mass spectrometry

DMEM:

Dulbecco’s Modified Eagle Medium

FBS:

Fetal Bovine Serum

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide

RG-ARE:

red grape anthocyanin rich extract

C-ARE:

chokeberry anthocyanin rich extract

Cy-3-O-glu:

Cyanidin-3-O-glucoside

Cy-3-O-ara:

Cyanidin-3-O-arabinoside

Cy-3-O- mal-glu:

Cyanidin-3-O-malonyl-glucoside

Cy-3-O- dio-glu:

Cyanidin-3-O- dioxalylglucoside

Cy-3-O-rut:

Cyanidin-3-O-rutinoside

Peo-3-O-glu:

Peonidin-3-O-glucoside

Peo-3-O-rut:

Peonidin-3-O-rutinoside

Delp-3-O-gal:

Delphinidin-3-O-galactoside

Delp-3-O-glu:

Delphinidin-3-O-glucoside

Cy-3-O-gal:

Cyanidin-3-O-galactoside

Delp-3-O-ara:

Delphinidin-3-O-arabinoside

Pet-3-O-gal:

Petunidin-3-O-galactoside

Peo-3-O-gal:

Peonidin-3-O-galactoside

Pet-3-O-ara:

Petunidin-3-O-arabinoside

Mal-3-O-gala:

Malvidin-3-O-galactoside

Mal-3-O-glu:

Malvidin-3-O-glucoside

Mal-3-O-ara:

Malvidin-3-O-arabinoside

Pet-3-O-glu:

Petunidin-3-O-glucoside

Pel-3-O-glu:

Pelargonidin-3-O-glucoside

Delp-3-O-rut:

Delphinidin-3-O-rutinoside

Cy-3-O-xyl:

Cyanidin-3-O-xyloside

Malvidin-3-O-glucoside-4-vinylcathecol:

Mal-3-O-glue 4 vinylcathecol

Malvidin-6-acetyl-3-galactoside:

Mal-6-acetyl-3-gal

Cy-3-O-sam:

Cyanidin-3-O-sambubioside

Pel-3-O-sam:

Pelargonidin-3-O-sambubioside

Pet-3-(6-O-p-coumarylglu):

Petunidin-3-(6-O-p-coumarylglucoside)

LDH:

Lactate dehydrogenase

MDA:

Malondialdehyde

References

  1. Chinembiri TN, du Plessis LH, Gerber M, Hamman JH, du Plessis J (2014) Review of natural compounds for potential skin cancer treatment. Molecules 19(8):11679–11721. https://doi.org/10.3390/molecules190811679

    Article  Google Scholar 

  2. Wang LS, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269(2):281–290. https://doi.org/10.1016/j.canlet.2008.05.020

    Article  CAS  Google Scholar 

  3. Rugină D, Sconţa Z, Leopold L, Pintea A, Bunea A, Socaciu C (2012) Antioxidant activities of chokeberry extracts and the cytotoxic action of their anthocyanin fraction on HeLa human cervical tumor cells. J Med Food 15(8):700–706

    Article  Google Scholar 

  4. Kim YH, Bang CY, Won EK, Kim JP, Choung SY (2009) Antioxidant activities of Vaccinium uliginosum L. extract and its active components. J Med Food 12(4):885–892

  5. Hukkanen AT, Polonen SS, Karenlampi SO, Kokko HI (2006) Antioxidant capacity and phenolic content of sweet rowanberries. J Agric Food Chem 54(1):112–119. https://doi.org/10.1021/jf051697g

    Article  CAS  Google Scholar 

  6. Jurgoński A, Juśkiewicz J, Zduńczyk Z (2008) Ingestion of black chokeberry fruit extract leads to intestinal and systemic changes in a rat model of prediabetes and hyperlipidemia. Plant Foods Hum Nutr 63(4):176–182. https://doi.org/10.1007/s11130-008-0087-7

  7. Rugina D, Diaconeasa Z, Coman C, Bunea A, Socaciu C, Pintea A (2015) Chokeberry anthocyanin extract as pancreatic beta-cell protectors in two models of  induced oxidative stress. Oxid Med Cell Longev 2015:429075. https://doi.org/10.1155/2015/429075

  8. Bunea A, Rugina D, Sconta Z, Pop RM, Pintea A, Socaciu C, Tabaran F, Grootaert C, Struijs K, VanCamp J (2013) Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells. Phytochemistry 95:436–444. https://doi.org/10.1016/j.phytochem.2013.06.018

    Article  CAS  Google Scholar 

  9. Li D, Wang P, Luo Y, Zhao M, Chen F (2015) Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Crit Rev Food Sci Nutr 57(8):1729-1741. https://doi.org/10.1080/10408398.2015.1030064

  10. Pratheeshkumar P, Son YO, Wang X, Divya SP, Joseph B, Hitron JA, Wang L, Kim D, Yin Y, Roy RV, Lu J, Zhang Z, Wang Y, Shi X (2014) Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-kappaB signaling pathways in SKH-1 hairless mice skin. Toxicol Appl Pharmacol 280(1):127–137. https://doi.org/10.1016/j.taap.2014.06.028

    Article  CAS  Google Scholar 

  11. Afaq F, Syed DN, Malik A, Hadi N, Sarfaraz S, Kweon MH, Khan N, Zaid MA, Mukhtar H (2007) Delphinidin, an anthocyanidin in pigmented fruits and vegetables, protects human HaCaT keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. J Invest Dermatol 127(1):222–232. https://doi.org/10.1038/sj.jid.5700510

    Article  CAS  Google Scholar 

  12. Wang E, Liu Y, Xu C, Liu J (2017) Antiproliferative and proapoptotic activities of anthocyanin and anthocyanidin extracts from blueberry fruits on B16-F10 melanoma cells. Food Nutr Res 61(1):1325308. https://doi.org/10.1080/16546628.2017.1325308

    Article  Google Scholar 

  13. Diaconeasa Z, Leopold L, Rugina D, Ayvaz H, Socaciu C (2015) Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int J Mol Sci 16(2):2352–2365. https://doi.org/10.3390/ijms16022352

    Article  CAS  Google Scholar 

  14. Forni C, Braglia R, Mulinacci N, Urbani A, Ronci M, Gismondi A, Tabolacci C, Provenzano B, Lentini A, Beninati S (2014) Antineoplastic activity of strawberry (Fragaria x ananassa Duch.) crude extracts on B16-F10 melanoma cells. Mol BioSyst 10(6):1255–1263. https://doi.org/10.1039/c3mb70316a

  15. Huang HP, Shih YW, Chang YC, Hung CN, Wang CJ (2008) Chemoinhibitory effect of mulberry anthocyanins on melanoma metastasis involved in the Ras/PI3K pathway. J Agric Food Chem 56(19):9286–9293. https://doi.org/10.1021/jf8013102

    Article  CAS  Google Scholar 

  16. He J, Giusti MM (2011) High-purity isolation of anthocyanins mixtures from fruits and vegetables--a novel solid-phase extraction method using mixed mode cation-exchange chromatography. J Chromatogr A 1218(44):7914–7922. https://doi.org/10.1016/j.chroma.2011.09.005

    Article  CAS  Google Scholar 

  17. McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A (2014) Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13(9):1400–1412. https://doi.org/10.4161/cc.28401

    Article  CAS  Google Scholar 

  18. Karatas F, Karatepe M, Baysar A (2002) Determination of free malondialdehyde in human serum by high-performance liquid chromatography. Anal Biochem 311(1):76–79

    Article  CAS  Google Scholar 

  19. Wu X, Prior RL (2005) Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem 53(7):2589–2599. https://doi.org/10.1021/jf048068b

    Article  CAS  Google Scholar 

  20. Ştefănuţ MN, Căta A, Pop R, Moşoarcă C, Zamfir AD (2011) Anthocyanins HPLC-DAD and MS characterization, total phenolics, and antioxidant activity of some berries extracts. Anal Lett 44(18):2843–2855. https://doi.org/10.1080/00032719.2011.582550

  21. Kallithraka S, Aliaj L, Makris DP, Kefalas P (2009) Anthocyanin profiles of major red grape (Vitis vinifera L.) varieties cultivated in Greece and their relationship with in vitro antioxidant characteristics. Int J Food Sci Technol 44(12):2385–2393. https://doi.org/10.1111/j.1365-2621.2008.01869.x

  22. Rubinskiene M, Jasutiene I, Venskutonis PR, Viskelis P (2005) HPLC determination of the composition and stability of blackcurrant anthocyanins. J Chromatogr Sci 43(9):478–482

    Article  CAS  Google Scholar 

  23. Prior RL, Lazarus SA, Cao G, Muccitelli H, Hammerstone JF (2001) Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium Spp.) using high-performance liquid chromatography/mass spectrometry. J Agric Food Chem 49(3):1270–1276. https://doi.org/10.1021/jf001211q

  24. Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Todorovic B, Veberic R, Stampar F, Ivancic A (2014) Investigation of anthocyanin profile of four elderberry species and interspecific hybrids. J Agric Food Chem 62(24):5573–5580. https://doi.org/10.1021/jf5011947

    Article  CAS  Google Scholar 

  25. Liu X, Xiao G, Chen W, Xu Y, Wu J (2004) Quantification and purification of mulberry anthocyanins with macroporous resins. J Biomed Biotechnol 2004(5):326–331. https://doi.org/10.1155/S1110724304403052

  26. Dey R, Moraes CT (2000) Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem 275(10):7087–7094

    Article  CAS  Google Scholar 

  27. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91(5):627–637. https://doi.org/10.1016/S0092-8674(00)80450-X

  28. Heiden MGV, Chandel NS, Schumacker PT, Thompson CB (1999) Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 3(2):159–167. https://doi.org/10.1016/S1097-2765(00)80307-X

  29. Hüttemann M, Lee I, Samavati L, Yu H, Doan JW (2007) Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochim Biophys Acta 1773(12):1701–1720. https://doi.org/10.1016/j.bbamcr.2007.10.001

  30. Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, Botting NP, Kay CD (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a (13)C-tracer study. Am J Clin Nutr 97(5):995–1003. https://doi.org/10.3945/ajcn.112.049247

    Article  CAS  Google Scholar 

  31. Afaq F, Saleem M, Krueger CG, Reed JD, Mukhtar H (2005) Anthocyanin- and hydrolyzable tannin-rich pomegranate fruit extract modulates MAPK and NF-kappaB pathways and inhibits skin tumorigenesis in CD-1 mice. Int J Cancer 113(3):423–433. https://doi.org/10.1002/ijc.20587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper was supported by UEFISCDI project number PN-II-RU-TE-2014-4-0944, 16/01.10.2015. The authors are grateful to biologist Raluca Ghiman for performing the graphical abstract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitriţa Ruginǎ.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaconeasa, Z., Ayvaz, H., Ruginǎ, D. et al. Melanoma Inhibition by Anthocyanins Is Associated with the Reduction of Oxidative Stress Biomarkers and Changes in Mitochondrial Membrane Potential. Plant Foods Hum Nutr 72, 404–410 (2017). https://doi.org/10.1007/s11130-017-0638-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-017-0638-x

Keywords

Navigation