Skip to main content

Antioxidant Capacity of Beetroot: Traditional vs Novel Approaches


Red beetroot has been ranked among the 10 most potent antioxidant vegetables, although only extraction-based methods have been used to evaluate its total antioxidant capacity. Therefore, the present study aims at comparing the traditional extraction-based method with two more recent approaches (QUENCHER -QUick, Easy, New, CHEap and Reproducible- and GAR -global antioxidant response method), in order to establish their suitability in the case of beetroot. Our results indicate that the total antioxidant capacity of beetroot would be underestimated when using extraction-based procedures, since both QUENCHER and GAR methods resulted in a higher total antioxidant capacity. The effect of a thermal treatment on the total antioxidant capacity of beetroot varies among the methods evaluated and our findings suggest different compounds responsible for the total antioxidant capacity detected in each pre-processing method. Remarkably, the present study demonstrates that the traditional extraction-based method seems useful to screen for (changes in) the “bioavailable” antioxidant potential of the root.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



2, 2′-anizo-bis-(3-ethylbenzthiazoline-6-sulfonic acid)


Ferric reducing antioxidant power


Global antioxidant response


QUick, Easy, New, CHEap and Reproducible


Total antioxidant capacity


Total polyphenols


  1. Khan MI (2015) Plant betalains: safety, antioxidant activity, clinical efficacy, and bioavailability. Compr Rev Food Sci Food Saf 00:1–15

  2. Song W, Derito CM, Liu MK et al (2010) Cellular antioxidant activity of common vegetables. J Agric Food Chem 58:6621–6629

    Article  CAS  Google Scholar 

  3. Kugler F, Stintzing FC, Carle R (2007) Evaluation of the antioxidant capacity of betalainic fruits and vegetables. J Appl Bot Food Qual 81:69–76

    CAS  Google Scholar 

  4. Kujala T, Vienola M, Klika K et al (2002) Betalain and phenolic compositions of four beetroot (Beta vulgaris) cultivars. Eur Food Res Technol 214:505–510

    Article  CAS  Google Scholar 

  5. Ravichandran K, Ahmed AR, Knorr D, Smetanska I (2012) The effect of different processing methods on phenolic acid content and antioxidant activity of red beet. Food Res Int 48:16–20

    Article  CAS  Google Scholar 

  6. Pérez-Jiménez J, Arranz S, Tabernero M et al (2008) Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: extraction, measurement and expression of results. Food Res Int 41:274–285

    Article  Google Scholar 

  7. Gökmen V, Serpen A, Fogliano V (2009) Direct measurement of the total antioxidant capacity of foods: the “QUENCHER” approach. Trends Food Sci Technol 20:278–288

    Article  Google Scholar 

  8. Pastoriza S, Delgado-Andrade C, Haro A, Rufián-Henares JA (2011) A physiologic approach to test the global antioxidant response of foods. The GAR method. Food Chem 129:1926–1932

    Article  CAS  Google Scholar 

  9. Parada J, Aguilera JM (2007) Food microstructure affects the bioavailability of several nutrients. J Food Sci 72:R21–R32

    Article  CAS  Google Scholar 

  10. Serpen A, Capuano E, Fogliano V, Gökmen V (2007) A new procedure to measure the antioxidant activity of insoluble food components. J Agric Food Chem 55:7676–7681

    Article  CAS  Google Scholar 

  11. Pérez-Jiménez J, Saura-Calixto F (2005) Literature data may underestimate the actual antioxidant capacity of cereals. J Agric Food Chem 53:5036–5040

    Article  Google Scholar 

  12. Miller DD, Schricker BR, Rasmussen RR, Van Campen D (1981) An in vitro method for estimation of iron availability from meals. Am J Clin Nutr 34:2248–2256

    CAS  Google Scholar 

  13. Rufián-Henares JA, Delgado-Andrade C (2009) Effect of digestive process on Maillard reaction indexes and antioxidant properties of breakfast cereals. Food Res Int 42:394–400

    Article  Google Scholar 

  14. Miller NJ, Rice-Evans C, Davies MJ et al (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci (Lond) 84:407–412

    Article  CAS  Google Scholar 

  15. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  16. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  17. Ravichandran K, Saw NMMT, Mohdaly AAA et al (2013) Impact of processing of red beet on betalain content and antioxidant activity. Food Res Int 50:670–675

    Article  CAS  Google Scholar 

  18. Nilsson T (1970) Studies into the pigments in beetroot (Beta vulgaris L. ssp. vulgaris var. r ubra L.). Lantbrukshogskolans Ann 36:179–219

  19. Carrillo C, Barrio Á, Cavia MM, Alonso-Torre SR (2016) Global antioxidant response of meat. J Sci Food Agric 97:2358–2365. doi:10.1002/jsfa.8047

  20. Palafox-Carlos H, Ayala-Zavala JF, González-Aguilar GA (2011) The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J Food Sci 76:6–15

  21. Padayachee A, Netzel G, Netzel M et al (2013) Lack of release of bound anthocyanins and phenolic acids from carrot plant cell walls and model composites during simulated gastric and small intestinal digestion. Food Funct 4:906–916

    Article  CAS  Google Scholar 

  22. Fraga CG, Oteiza PI, Galleano M (2014) In vitro measurements and interpretation of total antioxidant capacity. BBA - Gen Subj 1840:931–934. doi:10.1016/j.bbagen.2013.06.030

    Article  CAS  Google Scholar 

  23. Dewanto V, Wu X, Liu RH (2002) Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50:4959–4964

    Article  CAS  Google Scholar 

  24. El Gharras H (2011) Betalain: a particular class of antioxidant pigment. Nat Prod Commun 6:1425–1431

    CAS  Google Scholar 

  25. Herbach KM, Stintzing FC, Carle R (2006) Impact of thermal treatment on color and pigment pattern of red beet (Beta vulgaris L.) preparations. J Food Sci 69:C491–C498

    Article  Google Scholar 

  26. Proteggente AR, Pannala AS, Paganga G et al (2002) The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic Res 36:217–233

    Article  CAS  Google Scholar 

  27. Kraujalis P, Venskutonis PR, Kraujaliene V, Pukalskas A (2013) Antioxidant properties and preliminary evaluation of phytochemical composition of different anatomical parts of amaranth. Plant Foods Hum Nutr 68:322–328

  28. Tesoriere L, Fazzari M, Angileri F et al (2008) In vitro digestion of betalainic foods. Stability and bioaccessibility of betaxanthins and betacyanins and antioxidative potential of food digesta. J Agric Food Chem 56:10487–10492

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Celia Carrillo.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material


(DOCX 21.4 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo, C., Rey, R., Hendrickx, M. et al. Antioxidant Capacity of Beetroot: Traditional vs Novel Approaches. Plant Foods Hum Nutr 72, 266–273 (2017).

Download citation

  • Published:

  • Issue Date:

  • DOI: