Advertisement

Plant Foods for Human Nutrition

, Volume 72, Issue 1, pp 34–40 | Cite as

Optimization of Physical Conditions for the Aqueous Extraction of Antioxidant Compounds from Ginger (Zingiber officinale) Applying a Box-Behnken Design

  • Juan Ramírez-Godínez
  • Judith Jaimez-Ordaz
  • Araceli Castañeda-Ovando
  • Javier Añorve-Morga
  • Verónica Salazar-Pereda
  • Luis Guillermo González-Olivares
  • Elizabeth Contreras-LópezEmail author
Original Paper

Abstract

Since ancient times, ginger (Zingiber officinale) has been widely used for culinary and medicinal purposes. This rhizome possesses several chemical constituents; most of them present antioxidant capacity due mainly to the presence of phenolic compounds. Thus, the physical conditions for the optimal extraction of antioxidant components of ginger were investigated by applying a Box-Behnken experimental design. Extracts of ginger were prepared using water as solvent in a conventional solid–liquid extraction. The analyzed variables were time (5, 15 and 25 min), temperature (20, 55 and 90 °C) and sample concentration (2, 6 and 10 %). The antioxidant activity was measured using the 2,2-diphenyl-1-picrylhydrazyl method and a modified ferric reducing antioxidant power assay while total phenolics were measured by Folin & Ciocalteu’s method. The suggested experimental design allowed the acquisition of aqueous extracts of ginger with diverse antioxidant activity (100–555 mg Trolox/100 g, 147–1237 mg Fe2+/100 g and 50–332 mg gallic acid/100 g). Temperature was the determining factor in the extraction of components with antioxidant activity, regardless of time and sample quantity. The optimal physical conditions that allowed the highest antioxidant activity were: 90 °C, 15 min and 2 % of the sample. The correlation value between the antioxidant activity by ferric reducing antioxidant power assay and the content of total phenolics was R2 = 0.83. The experimental design applied allowed the determination of the physical conditions under which ginger aqueous extracts liberate compounds with antioxidant activity. Most of them are of the phenolic type as it was demonstrated through the correlation established between different methods used to measure antioxidant capacity.

Keywords

Zingiber officinale Box-Behnken DPPH* FRAP Total phenolics 

Abbreviations

AA

antioxidant activity

BHA

2-tert-butyl-hydroxyanisol

BHT

2-tert-butyl-hydroxytoluene

DPPH*

2,2-diphenyl-1-picrylhydrazyl

FRAP

ferric reducing antioxidant power method

GA

gallic acid

TBHQ

tert-butyl-hydroquinone

TPTZ

4,6-tripryridyl-s-triazine

Notes

Acknowledgments

For the support to CONACYT.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Supplementary material

11130_2016_582_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 17 kb)

References

  1. 1.
    Moure A, Cruz JM, Franco D, Domínguez JM, Sineiro J, Domínguez H, Núñez MJ, Parajó JC (2001) Natural antioxidant from residual sources. Food Chem 72:145–171CrossRefGoogle Scholar
  2. 2.
    Carocho M, Ferreira CFRI (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25CrossRefGoogle Scholar
  3. 3.
    Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247CrossRefGoogle Scholar
  4. 4.
    El-Ghorab AH, Nauman M, Anjum FM, Hussain S, Nadeem M (2010) A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J Agric Food Chem 58(14):8231–8237CrossRefGoogle Scholar
  5. 5.
    Nile SH, Park SW (2015) Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Ind Crop Prod 70:238–244CrossRefGoogle Scholar
  6. 6.
    Jeena K, Liju VB, Kuttan R (2013) Antioxidant, anti-inflammatory and antinociceptive activities of essential oil from ginger. Indian J Physiol Pharmacol 57(1):51–62Google Scholar
  7. 7.
    Shukla Y, Singh M (2007) Cancer preventive properties of ginger: a brief review. Food Chem Toxicol 45(5):683–690CrossRefGoogle Scholar
  8. 8.
    Ali BH, Blunden G, Tamira OM, Nemmar A (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46:409–420CrossRefGoogle Scholar
  9. 9.
    Prasad S, Tyagi AK (2015) Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroenterol Res Pract 1–15Google Scholar
  10. 10.
    Chen IN, Chang CC, Ng CC, Wang C-Y, Shyu YT, Chang T-L (2008) Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Foods Hum Nutr 63:15–20CrossRefGoogle Scholar
  11. 11.
    Liu Y, Roy SS, Nebie RHC, Zhang Y, Nair MG (2013) Functional food quality of Curcuma caesia, Curcuma zedoaria and Curcuma aeruginosa endemic to Northeastern India. Plant Foods Hum Nutr 68:72–77Google Scholar
  12. 12.
    Lu DL, Li XZ, Dai F, Kang YF, Li Y, Ma MM, Ren XR, Du GW, Jin XL, Zhou B (2014) Influence of side chain structure changes on antioxidant potency of the [6]-gingerol related compounds. Food Chem 165:191–197CrossRefGoogle Scholar
  13. 13.
    Gümüşaya ÖA, Borazanb AA, Ercalc N, Demirkold O (2015) Drying effects on the antioxidant properties of tomatoes and ginger. Food Chem 173:156–162CrossRefGoogle Scholar
  14. 14.
    Stoilova I, Krastanov A, Stoyanova A, Denev P, Gargova S (2007) Antioxidant activity of a ginger extracts (Zingiber officinale). Food Chem 102:764–770CrossRefGoogle Scholar
  15. 15.
    Kaur C, Kapoor VH (2002) Antioxidant activity and total phenolic content of some Asian vegetables. Int J Food Sci Technol 37:153–161CrossRefGoogle Scholar
  16. 16.
    Huda-Faujan N, Noriham A, Norrakiah AS, Babji AS (2009) Antioxidant activity of plants methanolic extracts containing phenolic compounds. Afr J Biotechnol 8:484–489Google Scholar
  17. 17.
    Cai Y, Luob Q, Sunc M, Corkea H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184CrossRefGoogle Scholar
  18. 18.
    Shan B, Cai YZ, Sun M, Corke H (2005) Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 53(20):7749–7759CrossRefGoogle Scholar
  19. 19.
    Hinneburg I, Dorman DHJ, Hiltunen R (2006) Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem 97:122–129CrossRefGoogle Scholar
  20. 20.
    Chan EWC, Lim YY, Wong LF, Lianto FS, Wong SK, Lim KK, Joe CE, Lim TY (2008) Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem 109:477–483CrossRefGoogle Scholar
  21. 21.
    Ghasemzadeh A, Jaafar HZE, Rahmat A (2010) Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules 15:4324–4333CrossRefGoogle Scholar
  22. 22.
    Chohan M, Forster-Wilkins G, Opara EI (2008) Determination of the antioxidant capacity of culinary herbs subjected to various cooking and storage processes using the ABTS*+ radical cation assay. Plant Foods Hum Nutr 63:47–52CrossRefGoogle Scholar
  23. 23.
    Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675CrossRefGoogle Scholar
  24. 24.
    Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856CrossRefGoogle Scholar
  25. 25.
    Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Juan Ramírez-Godínez
    • 1
  • Judith Jaimez-Ordaz
    • 1
  • Araceli Castañeda-Ovando
    • 1
  • Javier Añorve-Morga
    • 1
  • Verónica Salazar-Pereda
    • 1
  • Luis Guillermo González-Olivares
    • 1
  • Elizabeth Contreras-López
    • 1
    Email author
  1. 1.Chemistry DepartmentUniversidad Autónoma del Estado de HidalgoMineral de la Reforma, Hgo.Mexico

Personalised recommendations