Skip to main content
Log in

Phenolic Compounds, Antioxidant Activity and Lipid Profile of Huitlacoche Mushroom (Ustilago maydis) Produced in Several Maize Genotypes at Different Stages of Development

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Huitlacoche mushroom (composed by the fruiting bodies growing on the maize ears from the basidiomycete Ustilago maydis) is a culinary delicacy with a great economic and nutraceutical value. In this work, phenolic content, antioxidant activity, ergosterol and fatty acids profile from huitlacoche produced in 15 creole and in one hybrid maize genotypes, and harvested at different stages of development were determined. The hybrid crop was studied in raw and cooked samples. Total phenolic content ranged from 415.6 to 921.8.0 mg gallic acid equivalents per 100 g of flour. Samples exhibited attractive antioxidant activities: 75 % of antiradical activity on average by DPPH methodology, and ORAC values up to 7661.3 μmol Trolox equivalents /100  g. Important quantities of ferulic acid, quercetin, ergosterol, linoleic and oleic acids were observed. Stage of development and cooking process had an effect on evaluated compounds, sometimes negative and sometimes positive. Results suggest that huitlacoche is an attractive food source of phenolics with excellent antioxidant potential and interesting lipidic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ARA:

antiradical activity

dai:

days after inoculation

DPPH:

1,1-diphenyl-2-picrylhydrazyl

GAE:

gallic acid equivalents

HPLC:

high performance liquid chromatography

ORAC:

oxygen radical absorbance capacity

PUFAs:

polyunsaturated fatty acids

TE:

trolox equivalents

References

  1. Roleira FMF, Tavares-da-Silva EJ, Varela CL, Costa SC, Silva T, Garrido J, Borges F (2015) Plant derived and dietary phenolic antioxidans: anticancer properties. Food Chem 183:235–258. doi:10.1016/j.foodchem.2015.03.039

  2. Oroian M, Escriche I (2015) Antioxidants: characterization, natural sources, extraction and analysis. Food Res Int 47:10–36. doi:10.1016/j.foodres.2015.04.018

  3. Richard D, Kefi K, Barbe U, Bausero P, Visioli F (2008) Polyunsaturated fatty acids as antioxidants. Pharmacol Res 57:451–455. doi:10.1016/j.phrs.2008.05.002

    Article  CAS  Google Scholar 

  4. Castillo RL, Zepeda AB, Short SE, Figueroa E, Bustos-Obregón E, Farías JG (2015) Protective effects of polyunsatutared fatty acids supplementation against testicular damage induced by intermittent hypobaric hypoxia in rats. J Biomed Sci 22:8. doi:10.1186/s12929-015-0112-8

  5. Valverde ME, Hernández-Pérez T, Paredes-López O (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol. doi:10.1155/2015/376387

  6. Valverde ME, Hernández-Pérez T, Paredes-López O (2012) Huitlacoche- A 21st century culinary delight originated in the aztec times. Hispanic foods: chemistry and bioactive compounds. Chapter 7, pp 83–100. doi:10.1021/bk-2012-1109.ch007

  7. Aydogdu M (2015) Huitlacoche yield in some maize varieties in the Mediterranean region of Turkey. Food Sci Technol 35:386–390. doi:10.1590/1678-457X.6673

    Google Scholar 

  8. Valdez-Morales M, Barry K, Fahey Jr GC, Domínguez J, Gonzalez de Mejia E, Valverde ME, Paredes-López O (2010) Effect of maize genotype, developmental stage, and cooking process on the nutraceutical potential of huitlacoche (Ustilago maydis). Food Chem 119:689–697. doi:10.1016/j.foodchem.2009.07.015

    Article  CAS  Google Scholar 

  9. Beas FR, Loarca Piña G, Guzmán Maldonado SH, Gerardo Rodríguez MG, Vasco MNL, Guevara LF (2011) Potencial nutracéutico de componentes bioactivos presentes en huitlacoche de la zona centro de México. Rev Mex Cienc Farm 42:36–44. http://www.scielo.org.mx/scielo.php?pid=S187001952011000200006&script=sci_arttext

    Google Scholar 

  10. Vanegas PE, Valverde ME, Paredes-López O, Pataky JK (1995) Production of the edible fungus huitlacoche (Ustilago maydis) effect of maize genotype on chemical composition. J Ferment Bioeng 80:104–106. doi:10.1016/0922-338X(95)98187-P

    Article  CAS  Google Scholar 

  11. Lopez-Martinez LX, Oliart-Ros RM, Valerio-Alfaro G, Lee C-H, Parkin KL, Garcia HS (2009) Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Sci Technol 42:1187–1192. doi:10.1016/j.lwt.2008.10.010

    Article  CAS  Google Scholar 

  12. Palacios I, Lozano M, Moro C, D’Arrigo M, Rostagno MA, Martínez JA, García-Lafuente A, Guillamón E, Villares A (2011) Antioxidant properties of phenolic compounds occuring in edible mushrooms. Food Chem 128:674–678. doi:10.1016/j.foodchem.2011.03.085

  13. Yildiz O, Can Z, Qayomm L, Sahin H, Malkoc M (2015) Wild edible mushrooms as a natural source of phenolics and antioxidants. J Food Biochem 39:148–154. doi:10.1111/jfbc.12107

    Article  CAS  Google Scholar 

  14. González J, Reyes F, Salas C, Santiago M, Codriansky Y, Coliheuque N, Silva H (2006) Arabidopsis thaliana: a model host planto to study plant-pathogen interaction using Chilean field isolates of Botrytis cinerea. Biol Res 39:221–228. doi:10.4067/S0716-97602006000200004

    Article  Google Scholar 

  15. Wojakowska A, Muth D, Narożna D, Mądrzak C, Stobiecki M, Kachlicki P (2013) Changes of phenolic secondary metabolite profiles in the reaction of narrow leaf lupin (Lupinus angustifolius) plants to infections with Colletotrichum lupini fungus or treatment with its toxin. Metabolomics 9:575–589. doi:10.1007/s11306-012-0475-8

    Article  CAS  Google Scholar 

  16. Barros L, Baptista P, Correia DM, Morais JS, Ferreira FR (2007) Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms. J Agric Food Chem 55:8766–8771. doi:10.1021/jf070407o

    Article  CAS  Google Scholar 

  17. Sun L, Bai X, Zhuang Y (2014) Effect of different cooking methods on total phenolic contents and antioxidant activities of four Boletus mushrooms. J Food Sci Technol 51:3362–3368. doi:10.1007/s13197-012-0827-4

    Article  CAS  Google Scholar 

  18. Wong F-C, Chai T-T, Tan S-L, Yong, A-L (2013) Evaluation of bioactivities and phenolic content of selected edible mushrooms in Malaysia. Trop J Pharma Res 12:1011–1016. doi:10.4314/tjpr.v12i6.21

  19. Wang Y, Xu B (2014) Distribution of antioxidant activities and total phenolic contents in acetone, ethanol, water and hot water extracts from 20 edible mushrooms via sequential extraction. Austin J Nutri Food Sci 2:1009. http://www.austinpublishinggroup.com/nutrition-food-sciences/fulltext/ajnfs-v2-id1009.php

    Google Scholar 

  20. Rojas Vahos DF, Zapata Ocampo PA, Palacio Barrera AM, Ospina Alvarez SP, Atehortúa L (2013) Basidiomycetes mushroom biotechnology for the development of functional products: the effect of drying processes on biological activity. Open Conf Proc J 6:93–98. doi:10.2174/2210289201304010093

    Google Scholar 

  21. Muszyńska B, Sułkowska-Ziaja K, Ekiert H (2013) Phenolic acids in selected edible Basidiomycota species: Armillaria mellea, Boletus badius, Boletus edulis, Cantharellus cibarius, Lactarius deliciosus and Pleurotus ostreatus. Acta Sci Pol- Hortorum Cultus 12:107–116. http://www.acta.media.pl/pl/full/7/2013/0000702013...

    Google Scholar 

  22. Woldegiorgis AZ, Abate D, Haki GD, Ziegler GR (2014) Antioxidant property of edible mushrooms collected from Ethiopia. Food Chem 157:30–36. doi:10.1016/j.foodchem.2014.02.014

    Article  CAS  Google Scholar 

  23. Taofiq O, Calhelha RC, Heleno S, Barros L, Martins A, Santos-Buelga C, Queiroz MJRP, Ferreira ICFR (2015) The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Res Int 76:821–827. doi:10.1016/j.foodres.2015.07.044

    Article  CAS  Google Scholar 

  24. Jian-Ping Y, Jiang-Hai W, Xin L, Hui-Cong K, Xiao-Ni H (2006) Determination of ergosterol in Ganoderma spore lipid from the germinating spores of Ganoderma lucidum by high-performance liquid chromatography. J Agric Food Chem 54:6172–6176. doi:10.1021/jf0617059

    Article  Google Scholar 

  25. Phillips KM, Ruggio DM, Horst RL, Minor B, Simon RR, Feeney MJ, Byrdwell WC, Haytowitz DB (2011) Vitamin D and sterol composition of 10 types of mushrooms from retail suppliers in the United States. J Agric Food Chem 59:7841–7853. doi:10.1021/jf104246z

  26. Ergönül PG, Akata I, Kalyoncu F, Ergönül B (2013) Fatty acid compositions of six edible mushroom species. Sci World J. doi:10.1155/2013/163964

  27. Heleno SA, Barros L, Martins A, Morales P, Fernández-Ruiz V, Glamoclija J, Sokovic M, Ferreira ICFR (2015) Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT-Food Sci Technol 63:799–806. doi:10.1016/j.lwt.2015.04.028

    Article  CAS  Google Scholar 

  28. León-Guzmán MF, Silva I, López MG (1997) Proximate chemical composition, free amino acid contents, and free fatty acid contents of some edible mushrooms from Querétaro, México. J Agric Food Chem 45:4329–4332. doi:10.1021/jf970640u

    Article  Google Scholar 

Download references

Acknowledgments

The first author is grateful to Dr. Sergio Medina-Godoy, Dr. Laura Gabriela Espinosa-Alonso and Talía Yadira Hernández Pérez for technical assistance. MVM and OPL acknowledge Consejo Nacional de Ciencia y Tecnlogía’s fellowship, and partial financial support, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maribel Valdez-Morales.

Electronic supplementary material

ESM 1

(PDF 149 kb)

ESM 2

(PDF 833 kb)

ESM 3

(PDF 645 kb)

ESM 4

(PDF 92 kb)

ESM 5

(PDF 125 kb)

ESM 6

(PDF 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdez-Morales, M., Carlos, L.C., Valverde, M.E. et al. Phenolic Compounds, Antioxidant Activity and Lipid Profile of Huitlacoche Mushroom (Ustilago maydis) Produced in Several Maize Genotypes at Different Stages of Development. Plant Foods Hum Nutr 71, 436–443 (2016). https://doi.org/10.1007/s11130-016-0572-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-016-0572-3

Keywords

Navigation